Term Rewriting System R:
[x, y]
exp(x, 0) -> s(0)
exp(x, s(y)) -> *(x, exp(x, y))
*(0, y) -> 0
*(s(x), y) -> +(y, *(x, y))
-(0, y) -> 0
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)

Innermost Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

EXP(x, s(y)) -> *'(x, exp(x, y))
EXP(x, s(y)) -> EXP(x, y)
*'(s(x), y) -> *'(x, y)
-'(s(x), s(y)) -> -'(x, y)

Furthermore, R contains three SCCs.


   R
DPs
       →DP Problem 1
Usable Rules (Innermost)
       →DP Problem 2
UsableRules
       →DP Problem 3
UsableRules


Dependency Pair:

*'(s(x), y) -> *'(x, y)


Rules:


exp(x, 0) -> s(0)
exp(x, s(y)) -> *(x, exp(x, y))
*(0, y) -> 0
*(s(x), y) -> +(y, *(x, y))
-(0, y) -> 0
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)


Strategy:

innermost




As we are in the innermost case, we can delete all 7 non-usable-rules.


   R
DPs
       →DP Problem 1
UsableRules
           →DP Problem 4
Size-Change Principle
       →DP Problem 2
UsableRules
       →DP Problem 3
UsableRules


Dependency Pair:

*'(s(x), y) -> *'(x, y)


Rule:

none


Strategy:

innermost




We number the DPs as follows:
  1. *'(s(x), y) -> *'(x, y)
and get the following Size-Change Graph(s):
{1} , {1}
1>1
2=2

which lead(s) to this/these maximal multigraph(s):
{1} , {1}
1>1
2=2

DP: empty set
Oriented Rules: none

We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial

with Argument Filtering System:
s(x1) -> s(x1)

We obtain no new DP problems.


   R
DPs
       →DP Problem 1
UsableRules
       →DP Problem 2
Usable Rules (Innermost)
       →DP Problem 3
UsableRules


Dependency Pair:

-'(s(x), s(y)) -> -'(x, y)


Rules:


exp(x, 0) -> s(0)
exp(x, s(y)) -> *(x, exp(x, y))
*(0, y) -> 0
*(s(x), y) -> +(y, *(x, y))
-(0, y) -> 0
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)


Strategy:

innermost




As we are in the innermost case, we can delete all 7 non-usable-rules.


   R
DPs
       →DP Problem 1
UsableRules
       →DP Problem 2
UsableRules
           →DP Problem 5
Size-Change Principle
       →DP Problem 3
UsableRules


Dependency Pair:

-'(s(x), s(y)) -> -'(x, y)


Rule:

none


Strategy:

innermost




We number the DPs as follows:
  1. -'(s(x), s(y)) -> -'(x, y)
and get the following Size-Change Graph(s):
{1} , {1}
1>1
2>2

which lead(s) to this/these maximal multigraph(s):
{1} , {1}
1>1
2>2

DP: empty set
Oriented Rules: none

We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial

with Argument Filtering System:
s(x1) -> s(x1)

We obtain no new DP problems.


   R
DPs
       →DP Problem 1
UsableRules
       →DP Problem 2
UsableRules
       →DP Problem 3
Usable Rules (Innermost)


Dependency Pair:

EXP(x, s(y)) -> EXP(x, y)


Rules:


exp(x, 0) -> s(0)
exp(x, s(y)) -> *(x, exp(x, y))
*(0, y) -> 0
*(s(x), y) -> +(y, *(x, y))
-(0, y) -> 0
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)


Strategy:

innermost




As we are in the innermost case, we can delete all 7 non-usable-rules.


   R
DPs
       →DP Problem 1
UsableRules
       →DP Problem 2
UsableRules
       →DP Problem 3
UsableRules
           →DP Problem 6
Size-Change Principle


Dependency Pair:

EXP(x, s(y)) -> EXP(x, y)


Rule:

none


Strategy:

innermost




We number the DPs as follows:
  1. EXP(x, s(y)) -> EXP(x, y)
and get the following Size-Change Graph(s):
{1} , {1}
1=1
2>2

which lead(s) to this/these maximal multigraph(s):
{1} , {1}
1=1
2>2

DP: empty set
Oriented Rules: none

We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial

with Argument Filtering System:
s(x1) -> s(x1)

We obtain no new DP problems.

Innermost Termination of R successfully shown.
Duration:
0:00 minutes