R
↳Dependency Pair Analysis
EXP(x, s(y)) -> *'(x, exp(x, y))
EXP(x, s(y)) -> EXP(x, y)
*'(s(x), y) -> *'(x, y)
-'(s(x), s(y)) -> -'(x, y)
R
↳DPs
→DP Problem 1
↳Forward Instantiation Transformation
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
*'(s(x), y) -> *'(x, y)
exp(x, 0) -> s(0)
exp(x, s(y)) -> *(x, exp(x, y))
*(0, y) -> 0
*(s(x), y) -> +(y, *(x, y))
-(0, y) -> 0
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
innermost
one new Dependency Pair is created:
*'(s(x), y) -> *'(x, y)
*'(s(s(x'')), y'') -> *'(s(x''), y'')
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 4
↳Forward Instantiation Transformation
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
*'(s(s(x'')), y'') -> *'(s(x''), y'')
exp(x, 0) -> s(0)
exp(x, s(y)) -> *(x, exp(x, y))
*(0, y) -> 0
*(s(x), y) -> +(y, *(x, y))
-(0, y) -> 0
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
innermost
one new Dependency Pair is created:
*'(s(s(x'')), y'') -> *'(s(x''), y'')
*'(s(s(s(x''''))), y'''') -> *'(s(s(x'''')), y'''')
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 4
↳FwdInst
...
→DP Problem 5
↳Polynomial Ordering
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
*'(s(s(s(x''''))), y'''') -> *'(s(s(x'''')), y'''')
exp(x, 0) -> s(0)
exp(x, s(y)) -> *(x, exp(x, y))
*(0, y) -> 0
*(s(x), y) -> +(y, *(x, y))
-(0, y) -> 0
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
innermost
*'(s(s(s(x''''))), y'''') -> *'(s(s(x'''')), y'''')
POL(*'(x1, x2)) = 1 + x1 POL(s(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 4
↳FwdInst
...
→DP Problem 6
↳Dependency Graph
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
exp(x, 0) -> s(0)
exp(x, s(y)) -> *(x, exp(x, y))
*(0, y) -> 0
*(s(x), y) -> +(y, *(x, y))
-(0, y) -> 0
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Forward Instantiation Transformation
→DP Problem 3
↳FwdInst
-'(s(x), s(y)) -> -'(x, y)
exp(x, 0) -> s(0)
exp(x, s(y)) -> *(x, exp(x, y))
*(0, y) -> 0
*(s(x), y) -> +(y, *(x, y))
-(0, y) -> 0
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
innermost
one new Dependency Pair is created:
-'(s(x), s(y)) -> -'(x, y)
-'(s(s(x'')), s(s(y''))) -> -'(s(x''), s(y''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 7
↳Forward Instantiation Transformation
→DP Problem 3
↳FwdInst
-'(s(s(x'')), s(s(y''))) -> -'(s(x''), s(y''))
exp(x, 0) -> s(0)
exp(x, s(y)) -> *(x, exp(x, y))
*(0, y) -> 0
*(s(x), y) -> +(y, *(x, y))
-(0, y) -> 0
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
innermost
one new Dependency Pair is created:
-'(s(s(x'')), s(s(y''))) -> -'(s(x''), s(y''))
-'(s(s(s(x''''))), s(s(s(y'''')))) -> -'(s(s(x'''')), s(s(y'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 7
↳FwdInst
...
→DP Problem 8
↳Polynomial Ordering
→DP Problem 3
↳FwdInst
-'(s(s(s(x''''))), s(s(s(y'''')))) -> -'(s(s(x'''')), s(s(y'''')))
exp(x, 0) -> s(0)
exp(x, s(y)) -> *(x, exp(x, y))
*(0, y) -> 0
*(s(x), y) -> +(y, *(x, y))
-(0, y) -> 0
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
innermost
-'(s(s(s(x''''))), s(s(s(y'''')))) -> -'(s(s(x'''')), s(s(y'''')))
POL(-'(x1, x2)) = 1 + x1 POL(s(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 7
↳FwdInst
...
→DP Problem 9
↳Dependency Graph
→DP Problem 3
↳FwdInst
exp(x, 0) -> s(0)
exp(x, s(y)) -> *(x, exp(x, y))
*(0, y) -> 0
*(s(x), y) -> +(y, *(x, y))
-(0, y) -> 0
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Forward Instantiation Transformation
EXP(x, s(y)) -> EXP(x, y)
exp(x, 0) -> s(0)
exp(x, s(y)) -> *(x, exp(x, y))
*(0, y) -> 0
*(s(x), y) -> +(y, *(x, y))
-(0, y) -> 0
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
innermost
one new Dependency Pair is created:
EXP(x, s(y)) -> EXP(x, y)
EXP(x'', s(s(y''))) -> EXP(x'', s(y''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 10
↳Forward Instantiation Transformation
EXP(x'', s(s(y''))) -> EXP(x'', s(y''))
exp(x, 0) -> s(0)
exp(x, s(y)) -> *(x, exp(x, y))
*(0, y) -> 0
*(s(x), y) -> +(y, *(x, y))
-(0, y) -> 0
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
innermost
one new Dependency Pair is created:
EXP(x'', s(s(y''))) -> EXP(x'', s(y''))
EXP(x'''', s(s(s(y'''')))) -> EXP(x'''', s(s(y'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 10
↳FwdInst
...
→DP Problem 11
↳Polynomial Ordering
EXP(x'''', s(s(s(y'''')))) -> EXP(x'''', s(s(y'''')))
exp(x, 0) -> s(0)
exp(x, s(y)) -> *(x, exp(x, y))
*(0, y) -> 0
*(s(x), y) -> +(y, *(x, y))
-(0, y) -> 0
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
innermost
EXP(x'''', s(s(s(y'''')))) -> EXP(x'''', s(s(y'''')))
POL(EXP(x1, x2)) = 1 + x2 POL(s(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 10
↳FwdInst
...
→DP Problem 12
↳Dependency Graph
exp(x, 0) -> s(0)
exp(x, s(y)) -> *(x, exp(x, y))
*(0, y) -> 0
*(s(x), y) -> +(y, *(x, y))
-(0, y) -> 0
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
innermost