Term Rewriting System R:
[x, y]
bin(x, 0) -> s(0)
bin(0, s(y)) -> 0
bin(s(x), s(y)) -> +(bin(x, s(y)), bin(x, y))

Innermost Termination of R to be shown.

`   R`
`     ↳Dependency Pair Analysis`

R contains the following Dependency Pairs:

BIN(s(x), s(y)) -> BIN(x, s(y))
BIN(s(x), s(y)) -> BIN(x, y)

Furthermore, R contains one SCC.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Usable Rules (Innermost)`

Dependency Pairs:

BIN(s(x), s(y)) -> BIN(x, y)
BIN(s(x), s(y)) -> BIN(x, s(y))

Rules:

bin(x, 0) -> s(0)
bin(0, s(y)) -> 0
bin(s(x), s(y)) -> +(bin(x, s(y)), bin(x, y))

Strategy:

innermost

As we are in the innermost case, we can delete all 3 non-usable-rules.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳UsableRules`
`           →DP Problem 2`
`             ↳Size-Change Principle`

Dependency Pairs:

BIN(s(x), s(y)) -> BIN(x, y)
BIN(s(x), s(y)) -> BIN(x, s(y))

Rule:

none

Strategy:

innermost

We number the DPs as follows:
1. BIN(s(x), s(y)) -> BIN(x, y)
2. BIN(s(x), s(y)) -> BIN(x, s(y))
and get the following Size-Change Graph(s):
{1, 2} , {1, 2}
1>1
2>2
{1, 2} , {1, 2}
1>1
2=2

which lead(s) to this/these maximal multigraph(s):
{1, 2} , {1, 2}
1>1
2=2
{1, 2} , {1, 2}
1>1
2>2

DP: empty set
Oriented Rules: none

We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial

with Argument Filtering System:
s(x1) -> s(x1)

We obtain no new DP problems.

Innermost Termination of R successfully shown.
Duration:
0:00 minutes