R
↳Dependency Pair Analysis
BIN(s(x), s(y)) -> BIN(x, s(y))
BIN(s(x), s(y)) -> BIN(x, y)
R
↳DPs
→DP Problem 1
↳Forward Instantiation Transformation
BIN(s(x), s(y)) -> BIN(x, y)
BIN(s(x), s(y)) -> BIN(x, s(y))
bin(x, 0) -> s(0)
bin(0, s(y)) -> 0
bin(s(x), s(y)) -> +(bin(x, s(y)), bin(x, y))
innermost
one new Dependency Pair is created:
BIN(s(x), s(y)) -> BIN(x, s(y))
BIN(s(s(x'')), s(y'')) -> BIN(s(x''), s(y''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Forward Instantiation Transformation
BIN(s(s(x'')), s(y'')) -> BIN(s(x''), s(y''))
BIN(s(x), s(y)) -> BIN(x, y)
bin(x, 0) -> s(0)
bin(0, s(y)) -> 0
bin(s(x), s(y)) -> +(bin(x, s(y)), bin(x, y))
innermost
two new Dependency Pairs are created:
BIN(s(x), s(y)) -> BIN(x, y)
BIN(s(s(x'')), s(s(y''))) -> BIN(s(x''), s(y''))
BIN(s(s(s(x''''))), s(s(y''''))) -> BIN(s(s(x'''')), s(y''''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 3
↳Forward Instantiation Transformation
BIN(s(s(s(x''''))), s(s(y''''))) -> BIN(s(s(x'''')), s(y''''))
BIN(s(s(x'')), s(s(y''))) -> BIN(s(x''), s(y''))
BIN(s(s(x'')), s(y'')) -> BIN(s(x''), s(y''))
bin(x, 0) -> s(0)
bin(0, s(y)) -> 0
bin(s(x), s(y)) -> +(bin(x, s(y)), bin(x, y))
innermost
three new Dependency Pairs are created:
BIN(s(s(x'')), s(y'')) -> BIN(s(x''), s(y''))
BIN(s(s(s(x''''))), s(y'''')) -> BIN(s(s(x'''')), s(y''''))
BIN(s(s(s(x''''))), s(s(y''''))) -> BIN(s(s(x'''')), s(s(y'''')))
BIN(s(s(s(s(x'''''')))), s(s(y''''''))) -> BIN(s(s(s(x''''''))), s(s(y'''''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 4
↳Forward Instantiation Transformation
BIN(s(s(s(s(x'''''')))), s(s(y''''''))) -> BIN(s(s(s(x''''''))), s(s(y'''''')))
BIN(s(s(s(x''''))), s(s(y''''))) -> BIN(s(s(x'''')), s(s(y'''')))
BIN(s(s(s(x''''))), s(y'''')) -> BIN(s(s(x'''')), s(y''''))
BIN(s(s(x'')), s(s(y''))) -> BIN(s(x''), s(y''))
BIN(s(s(s(x''''))), s(s(y''''))) -> BIN(s(s(x'''')), s(y''''))
bin(x, 0) -> s(0)
bin(0, s(y)) -> 0
bin(s(x), s(y)) -> +(bin(x, s(y)), bin(x, y))
innermost
four new Dependency Pairs are created:
BIN(s(s(x'')), s(s(y''))) -> BIN(s(x''), s(y''))
BIN(s(s(s(x''''))), s(s(s(y'''')))) -> BIN(s(s(x'''')), s(s(y'''')))
BIN(s(s(s(s(x'''''')))), s(s(s(y'''''')))) -> BIN(s(s(s(x''''''))), s(s(y'''''')))
BIN(s(s(s(s(x'''''')))), s(s(y'''))) -> BIN(s(s(s(x''''''))), s(y'''))
BIN(s(s(s(s(s(x''''''''))))), s(s(s(y'''''''')))) -> BIN(s(s(s(s(x'''''''')))), s(s(y'''''''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 5
↳Forward Instantiation Transformation
BIN(s(s(s(s(s(x''''''''))))), s(s(s(y'''''''')))) -> BIN(s(s(s(s(x'''''''')))), s(s(y'''''''')))
BIN(s(s(s(s(x'''''')))), s(s(y'''))) -> BIN(s(s(s(x''''''))), s(y'''))
BIN(s(s(s(s(x'''''')))), s(s(s(y'''''')))) -> BIN(s(s(s(x''''''))), s(s(y'''''')))
BIN(s(s(s(x''''))), s(s(s(y'''')))) -> BIN(s(s(x'''')), s(s(y'''')))
BIN(s(s(s(x''''))), s(s(y''''))) -> BIN(s(s(x'''')), s(s(y'''')))
BIN(s(s(s(x''''))), s(y'''')) -> BIN(s(s(x'''')), s(y''''))
BIN(s(s(s(x''''))), s(s(y''''))) -> BIN(s(s(x'''')), s(y''''))
BIN(s(s(s(s(x'''''')))), s(s(y''''''))) -> BIN(s(s(s(x''''''))), s(s(y'''''')))
bin(x, 0) -> s(0)
bin(0, s(y)) -> 0
bin(s(x), s(y)) -> +(bin(x, s(y)), bin(x, y))
innermost
seven new Dependency Pairs are created:
BIN(s(s(s(x''''))), s(s(y''''))) -> BIN(s(s(x'''')), s(y''''))
BIN(s(s(s(s(x'''''')))), s(s(s(y'''''')))) -> BIN(s(s(s(x''''''))), s(s(y'''''')))
BIN(s(s(s(s(x'''''')))), s(s(y''''''))) -> BIN(s(s(s(x''''''))), s(y''''''))
BIN(s(s(s(s(s(x''''''''))))), s(s(s(y'''''''')))) -> BIN(s(s(s(s(x'''''''')))), s(s(y'''''''')))
BIN(s(s(s(s(x'''''')))), s(s(s(s(y''''''))))) -> BIN(s(s(s(x''''''))), s(s(s(y''''''))))
BIN(s(s(s(s(s(x''''''''))))), s(s(s(s(y''''''''))))) -> BIN(s(s(s(s(x'''''''')))), s(s(s(y''''''''))))
BIN(s(s(s(s(s(x''''''''))))), s(s(s(y'''''')))) -> BIN(s(s(s(s(x'''''''')))), s(s(y'''''')))
BIN(s(s(s(s(s(s(x'''''''''')))))), s(s(s(s(y''''''''''))))) -> BIN(s(s(s(s(s(x''''''''''))))), s(s(s(y''''''''''))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 6
↳Polynomial Ordering
BIN(s(s(s(s(s(s(x'''''''''')))))), s(s(s(s(y''''''''''))))) -> BIN(s(s(s(s(s(x''''''''''))))), s(s(s(y''''''''''))))
BIN(s(s(s(s(s(x''''''''))))), s(s(s(y'''''')))) -> BIN(s(s(s(s(x'''''''')))), s(s(y'''''')))
BIN(s(s(s(s(s(x''''''''))))), s(s(s(s(y''''''''))))) -> BIN(s(s(s(s(x'''''''')))), s(s(s(y''''''''))))
BIN(s(s(s(s(x'''''')))), s(s(s(s(y''''''))))) -> BIN(s(s(s(x''''''))), s(s(s(y''''''))))
BIN(s(s(s(s(s(x''''''''))))), s(s(s(y'''''''')))) -> BIN(s(s(s(s(x'''''''')))), s(s(y'''''''')))
BIN(s(s(s(s(x'''''')))), s(s(y''''''))) -> BIN(s(s(s(x''''''))), s(y''''''))
BIN(s(s(s(s(x'''''')))), s(s(s(y'''''')))) -> BIN(s(s(s(x''''''))), s(s(y'''''')))
BIN(s(s(s(s(x'''''')))), s(s(y'''))) -> BIN(s(s(s(x''''''))), s(y'''))
BIN(s(s(s(s(x'''''')))), s(s(s(y'''''')))) -> BIN(s(s(s(x''''''))), s(s(y'''''')))
BIN(s(s(s(x''''))), s(s(s(y'''')))) -> BIN(s(s(x'''')), s(s(y'''')))
BIN(s(s(s(s(x'''''')))), s(s(y''''''))) -> BIN(s(s(s(x''''''))), s(s(y'''''')))
BIN(s(s(s(x''''))), s(s(y''''))) -> BIN(s(s(x'''')), s(s(y'''')))
BIN(s(s(s(x''''))), s(y'''')) -> BIN(s(s(x'''')), s(y''''))
BIN(s(s(s(s(s(x''''''''))))), s(s(s(y'''''''')))) -> BIN(s(s(s(s(x'''''''')))), s(s(y'''''''')))
bin(x, 0) -> s(0)
bin(0, s(y)) -> 0
bin(s(x), s(y)) -> +(bin(x, s(y)), bin(x, y))
innermost
BIN(s(s(s(s(s(s(x'''''''''')))))), s(s(s(s(y''''''''''))))) -> BIN(s(s(s(s(s(x''''''''''))))), s(s(s(y''''''''''))))
BIN(s(s(s(s(s(x''''''''))))), s(s(s(y'''''')))) -> BIN(s(s(s(s(x'''''''')))), s(s(y'''''')))
BIN(s(s(s(s(s(x''''''''))))), s(s(s(s(y''''''''))))) -> BIN(s(s(s(s(x'''''''')))), s(s(s(y''''''''))))
BIN(s(s(s(s(x'''''')))), s(s(s(s(y''''''))))) -> BIN(s(s(s(x''''''))), s(s(s(y''''''))))
BIN(s(s(s(s(s(x''''''''))))), s(s(s(y'''''''')))) -> BIN(s(s(s(s(x'''''''')))), s(s(y'''''''')))
BIN(s(s(s(s(x'''''')))), s(s(y''''''))) -> BIN(s(s(s(x''''''))), s(y''''''))
BIN(s(s(s(s(x'''''')))), s(s(s(y'''''')))) -> BIN(s(s(s(x''''''))), s(s(y'''''')))
BIN(s(s(s(s(x'''''')))), s(s(y'''))) -> BIN(s(s(s(x''''''))), s(y'''))
BIN(s(s(s(x''''))), s(s(s(y'''')))) -> BIN(s(s(x'''')), s(s(y'''')))
POL(s(x1)) = 1 + x1 POL(BIN(x1, x2)) = 1 + x2
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 7
↳Polynomial Ordering
BIN(s(s(s(s(x'''''')))), s(s(y''''''))) -> BIN(s(s(s(x''''''))), s(s(y'''''')))
BIN(s(s(s(x''''))), s(s(y''''))) -> BIN(s(s(x'''')), s(s(y'''')))
BIN(s(s(s(x''''))), s(y'''')) -> BIN(s(s(x'''')), s(y''''))
bin(x, 0) -> s(0)
bin(0, s(y)) -> 0
bin(s(x), s(y)) -> +(bin(x, s(y)), bin(x, y))
innermost
BIN(s(s(s(s(x'''''')))), s(s(y''''''))) -> BIN(s(s(s(x''''''))), s(s(y'''''')))
BIN(s(s(s(x''''))), s(s(y''''))) -> BIN(s(s(x'''')), s(s(y'''')))
BIN(s(s(s(x''''))), s(y'''')) -> BIN(s(s(x'''')), s(y''''))
POL(s(x1)) = 1 + x1 POL(BIN(x1, x2)) = 1 + x1 + x2
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 8
↳Dependency Graph
bin(x, 0) -> s(0)
bin(0, s(y)) -> 0
bin(s(x), s(y)) -> +(bin(x, s(y)), bin(x, y))
innermost