Term Rewriting System R:
[x]
sum(0) -> 0
sum(s(x)) -> +(sqr(s(x)), sum(x))
sum(s(x)) -> +(*(s(x), s(x)), sum(x))
sqr(x) -> *(x, x)
Innermost Termination of R to be shown.
R
↳Dependency Pair Analysis
R contains the following Dependency Pairs:
SUM(s(x)) -> SQR(s(x))
SUM(s(x)) -> SUM(x)
Furthermore, R contains one SCC.
R
↳DPs
→DP Problem 1
↳Usable Rules (Innermost)
Dependency Pair:
SUM(s(x)) -> SUM(x)
Rules:
sum(0) -> 0
sum(s(x)) -> +(sqr(s(x)), sum(x))
sum(s(x)) -> +(*(s(x), s(x)), sum(x))
sqr(x) -> *(x, x)
Strategy:
innermost
As we are in the innermost case, we can delete all 4 non-usable-rules.
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳Size-Change Principle
Dependency Pair:
SUM(s(x)) -> SUM(x)
Rule:
none
Strategy:
innermost
We number the DPs as follows:
- SUM(s(x)) -> SUM(x)
and get the following Size-Change Graph(s):
which lead(s) to this/these maximal multigraph(s):
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
s(x1) -> s(x1)
We obtain no new DP problems.
Innermost Termination of R successfully shown.
Duration:
0:00 minutes