R
↳Dependency Pair Analysis
SQR(s(x)) -> +'(sqr(x), s(double(x)))
SQR(s(x)) -> SQR(x)
SQR(s(x)) -> DOUBLE(x)
SQR(s(x)) -> +'(sqr(x), double(x))
DOUBLE(s(x)) -> DOUBLE(x)
+'(x, s(y)) -> +'(x, y)
R
↳DPs
→DP Problem 1
↳Forward Instantiation Transformation
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
+'(x, s(y)) -> +'(x, y)
sqr(0) -> 0
sqr(s(x)) -> +(sqr(x), s(double(x)))
sqr(s(x)) -> s(+(sqr(x), double(x)))
double(0) -> 0
double(s(x)) -> s(s(double(x)))
+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))
innermost
one new Dependency Pair is created:
+'(x, s(y)) -> +'(x, y)
+'(x'', s(s(y''))) -> +'(x'', s(y''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 4
↳Forward Instantiation Transformation
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
+'(x'', s(s(y''))) -> +'(x'', s(y''))
sqr(0) -> 0
sqr(s(x)) -> +(sqr(x), s(double(x)))
sqr(s(x)) -> s(+(sqr(x), double(x)))
double(0) -> 0
double(s(x)) -> s(s(double(x)))
+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))
innermost
one new Dependency Pair is created:
+'(x'', s(s(y''))) -> +'(x'', s(y''))
+'(x'''', s(s(s(y'''')))) -> +'(x'''', s(s(y'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 4
↳FwdInst
...
→DP Problem 5
↳Argument Filtering and Ordering
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
+'(x'''', s(s(s(y'''')))) -> +'(x'''', s(s(y'''')))
sqr(0) -> 0
sqr(s(x)) -> +(sqr(x), s(double(x)))
sqr(s(x)) -> s(+(sqr(x), double(x)))
double(0) -> 0
double(s(x)) -> s(s(double(x)))
+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))
innermost
+'(x'''', s(s(s(y'''')))) -> +'(x'''', s(s(y'''')))
+'(x1, x2) -> +'(x1, x2)
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 4
↳FwdInst
...
→DP Problem 6
↳Dependency Graph
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
sqr(0) -> 0
sqr(s(x)) -> +(sqr(x), s(double(x)))
sqr(s(x)) -> s(+(sqr(x), double(x)))
double(0) -> 0
double(s(x)) -> s(s(double(x)))
+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Forward Instantiation Transformation
→DP Problem 3
↳FwdInst
DOUBLE(s(x)) -> DOUBLE(x)
sqr(0) -> 0
sqr(s(x)) -> +(sqr(x), s(double(x)))
sqr(s(x)) -> s(+(sqr(x), double(x)))
double(0) -> 0
double(s(x)) -> s(s(double(x)))
+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))
innermost
one new Dependency Pair is created:
DOUBLE(s(x)) -> DOUBLE(x)
DOUBLE(s(s(x''))) -> DOUBLE(s(x''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 7
↳Forward Instantiation Transformation
→DP Problem 3
↳FwdInst
DOUBLE(s(s(x''))) -> DOUBLE(s(x''))
sqr(0) -> 0
sqr(s(x)) -> +(sqr(x), s(double(x)))
sqr(s(x)) -> s(+(sqr(x), double(x)))
double(0) -> 0
double(s(x)) -> s(s(double(x)))
+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))
innermost
one new Dependency Pair is created:
DOUBLE(s(s(x''))) -> DOUBLE(s(x''))
DOUBLE(s(s(s(x'''')))) -> DOUBLE(s(s(x'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 7
↳FwdInst
...
→DP Problem 8
↳Argument Filtering and Ordering
→DP Problem 3
↳FwdInst
DOUBLE(s(s(s(x'''')))) -> DOUBLE(s(s(x'''')))
sqr(0) -> 0
sqr(s(x)) -> +(sqr(x), s(double(x)))
sqr(s(x)) -> s(+(sqr(x), double(x)))
double(0) -> 0
double(s(x)) -> s(s(double(x)))
+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))
innermost
DOUBLE(s(s(s(x'''')))) -> DOUBLE(s(s(x'''')))
DOUBLE(x1) -> DOUBLE(x1)
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 7
↳FwdInst
...
→DP Problem 9
↳Dependency Graph
→DP Problem 3
↳FwdInst
sqr(0) -> 0
sqr(s(x)) -> +(sqr(x), s(double(x)))
sqr(s(x)) -> s(+(sqr(x), double(x)))
double(0) -> 0
double(s(x)) -> s(s(double(x)))
+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Forward Instantiation Transformation
SQR(s(x)) -> SQR(x)
sqr(0) -> 0
sqr(s(x)) -> +(sqr(x), s(double(x)))
sqr(s(x)) -> s(+(sqr(x), double(x)))
double(0) -> 0
double(s(x)) -> s(s(double(x)))
+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))
innermost
one new Dependency Pair is created:
SQR(s(x)) -> SQR(x)
SQR(s(s(x''))) -> SQR(s(x''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 10
↳Forward Instantiation Transformation
SQR(s(s(x''))) -> SQR(s(x''))
sqr(0) -> 0
sqr(s(x)) -> +(sqr(x), s(double(x)))
sqr(s(x)) -> s(+(sqr(x), double(x)))
double(0) -> 0
double(s(x)) -> s(s(double(x)))
+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))
innermost
one new Dependency Pair is created:
SQR(s(s(x''))) -> SQR(s(x''))
SQR(s(s(s(x'''')))) -> SQR(s(s(x'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 10
↳FwdInst
...
→DP Problem 11
↳Argument Filtering and Ordering
SQR(s(s(s(x'''')))) -> SQR(s(s(x'''')))
sqr(0) -> 0
sqr(s(x)) -> +(sqr(x), s(double(x)))
sqr(s(x)) -> s(+(sqr(x), double(x)))
double(0) -> 0
double(s(x)) -> s(s(double(x)))
+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))
innermost
SQR(s(s(s(x'''')))) -> SQR(s(s(x'''')))
SQR(x1) -> SQR(x1)
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 10
↳FwdInst
...
→DP Problem 12
↳Dependency Graph
sqr(0) -> 0
sqr(s(x)) -> +(sqr(x), s(double(x)))
sqr(s(x)) -> s(+(sqr(x), double(x)))
double(0) -> 0
double(s(x)) -> s(s(double(x)))
+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))
innermost