Term Rewriting System R:
[x, y]
sum(0) -> 0
sum(s(x)) -> +(sum(x), s(x))
+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))

Innermost Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

SUM(s(x)) -> +'(sum(x), s(x))
SUM(s(x)) -> SUM(x)
+'(x, s(y)) -> +'(x, y)

Furthermore, R contains two SCCs.


   R
DPs
       →DP Problem 1
Forward Instantiation Transformation
       →DP Problem 2
FwdInst


Dependency Pair:

+'(x, s(y)) -> +'(x, y)


Rules:


sum(0) -> 0
sum(s(x)) -> +(sum(x), s(x))
+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

+'(x, s(y)) -> +'(x, y)
one new Dependency Pair is created:

+'(x'', s(s(y''))) -> +'(x'', s(y''))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
           →DP Problem 3
Forward Instantiation Transformation
       →DP Problem 2
FwdInst


Dependency Pair:

+'(x'', s(s(y''))) -> +'(x'', s(y''))


Rules:


sum(0) -> 0
sum(s(x)) -> +(sum(x), s(x))
+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

+'(x'', s(s(y''))) -> +'(x'', s(y''))
one new Dependency Pair is created:

+'(x'''', s(s(s(y'''')))) -> +'(x'''', s(s(y'''')))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
           →DP Problem 3
FwdInst
             ...
               →DP Problem 4
Argument Filtering and Ordering
       →DP Problem 2
FwdInst


Dependency Pair:

+'(x'''', s(s(s(y'''')))) -> +'(x'''', s(s(y'''')))


Rules:


sum(0) -> 0
sum(s(x)) -> +(sum(x), s(x))
+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))


Strategy:

innermost




The following dependency pair can be strictly oriented:

+'(x'''', s(s(s(y'''')))) -> +'(x'''', s(s(y'''')))


There are no usable rules for innermost that need to be oriented.
Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(s(x1))=  1 + x1  
  POL(+'(x1, x2))=  1 + x1 + x2  

resulting in one new DP problem.
Used Argument Filtering System:
+'(x1, x2) -> +'(x1, x2)
s(x1) -> s(x1)


   R
DPs
       →DP Problem 1
FwdInst
           →DP Problem 3
FwdInst
             ...
               →DP Problem 5
Dependency Graph
       →DP Problem 2
FwdInst


Dependency Pair:


Rules:


sum(0) -> 0
sum(s(x)) -> +(sum(x), s(x))
+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Forward Instantiation Transformation


Dependency Pair:

SUM(s(x)) -> SUM(x)


Rules:


sum(0) -> 0
sum(s(x)) -> +(sum(x), s(x))
+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

SUM(s(x)) -> SUM(x)
one new Dependency Pair is created:

SUM(s(s(x''))) -> SUM(s(x''))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
           →DP Problem 6
Forward Instantiation Transformation


Dependency Pair:

SUM(s(s(x''))) -> SUM(s(x''))


Rules:


sum(0) -> 0
sum(s(x)) -> +(sum(x), s(x))
+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

SUM(s(s(x''))) -> SUM(s(x''))
one new Dependency Pair is created:

SUM(s(s(s(x'''')))) -> SUM(s(s(x'''')))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
           →DP Problem 6
FwdInst
             ...
               →DP Problem 7
Argument Filtering and Ordering


Dependency Pair:

SUM(s(s(s(x'''')))) -> SUM(s(s(x'''')))


Rules:


sum(0) -> 0
sum(s(x)) -> +(sum(x), s(x))
+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))


Strategy:

innermost




The following dependency pair can be strictly oriented:

SUM(s(s(s(x'''')))) -> SUM(s(s(x'''')))


There are no usable rules for innermost that need to be oriented.
Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(SUM(x1))=  1 + x1  
  POL(s(x1))=  1 + x1  

resulting in one new DP problem.
Used Argument Filtering System:
SUM(x1) -> SUM(x1)
s(x1) -> s(x1)


   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
           →DP Problem 6
FwdInst
             ...
               →DP Problem 8
Dependency Graph


Dependency Pair:


Rules:


sum(0) -> 0
sum(s(x)) -> +(sum(x), s(x))
+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.

Innermost Termination of R successfully shown.
Duration:
0:00 minutes