R
↳Dependency Pair Analysis
SUM(s(x)) -> SUM(x)
SUM1(s(x)) -> SUM1(x)
R
↳DPs
→DP Problem 1
↳Forward Instantiation Transformation
→DP Problem 2
↳FwdInst
SUM(s(x)) -> SUM(x)
sum(0) -> 0
sum(s(x)) -> +(sum(x), s(x))
sum1(0) -> 0
sum1(s(x)) -> s(+(sum1(x), +(x, x)))
innermost
one new Dependency Pair is created:
SUM(s(x)) -> SUM(x)
SUM(s(s(x''))) -> SUM(s(x''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 3
↳Forward Instantiation Transformation
→DP Problem 2
↳FwdInst
SUM(s(s(x''))) -> SUM(s(x''))
sum(0) -> 0
sum(s(x)) -> +(sum(x), s(x))
sum1(0) -> 0
sum1(s(x)) -> s(+(sum1(x), +(x, x)))
innermost
one new Dependency Pair is created:
SUM(s(s(x''))) -> SUM(s(x''))
SUM(s(s(s(x'''')))) -> SUM(s(s(x'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 3
↳FwdInst
...
→DP Problem 4
↳Polynomial Ordering
→DP Problem 2
↳FwdInst
SUM(s(s(s(x'''')))) -> SUM(s(s(x'''')))
sum(0) -> 0
sum(s(x)) -> +(sum(x), s(x))
sum1(0) -> 0
sum1(s(x)) -> s(+(sum1(x), +(x, x)))
innermost
SUM(s(s(s(x'''')))) -> SUM(s(s(x'''')))
POL(SUM(x1)) = 1 + x1 POL(s(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 3
↳FwdInst
...
→DP Problem 5
↳Dependency Graph
→DP Problem 2
↳FwdInst
sum(0) -> 0
sum(s(x)) -> +(sum(x), s(x))
sum1(0) -> 0
sum1(s(x)) -> s(+(sum1(x), +(x, x)))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Forward Instantiation Transformation
SUM1(s(x)) -> SUM1(x)
sum(0) -> 0
sum(s(x)) -> +(sum(x), s(x))
sum1(0) -> 0
sum1(s(x)) -> s(+(sum1(x), +(x, x)))
innermost
one new Dependency Pair is created:
SUM1(s(x)) -> SUM1(x)
SUM1(s(s(x''))) -> SUM1(s(x''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 6
↳Forward Instantiation Transformation
SUM1(s(s(x''))) -> SUM1(s(x''))
sum(0) -> 0
sum(s(x)) -> +(sum(x), s(x))
sum1(0) -> 0
sum1(s(x)) -> s(+(sum1(x), +(x, x)))
innermost
one new Dependency Pair is created:
SUM1(s(s(x''))) -> SUM1(s(x''))
SUM1(s(s(s(x'''')))) -> SUM1(s(s(x'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 6
↳FwdInst
...
→DP Problem 7
↳Polynomial Ordering
SUM1(s(s(s(x'''')))) -> SUM1(s(s(x'''')))
sum(0) -> 0
sum(s(x)) -> +(sum(x), s(x))
sum1(0) -> 0
sum1(s(x)) -> s(+(sum1(x), +(x, x)))
innermost
SUM1(s(s(s(x'''')))) -> SUM1(s(s(x'''')))
POL(s(x1)) = 1 + x1 POL(SUM1(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 6
↳FwdInst
...
→DP Problem 8
↳Dependency Graph
sum(0) -> 0
sum(s(x)) -> +(sum(x), s(x))
sum1(0) -> 0
sum1(s(x)) -> s(+(sum1(x), +(x, x)))
innermost