R
↳Dependency Pair Analysis
F(s(x)) -> G(x, s(x))
G(s(x), y) -> G(x, +(y, s(x)))
G(s(x), y) -> +'(y, s(x))
G(s(x), y) -> G(x, s(+(y, x)))
G(s(x), y) -> +'(y, x)
+'(x, s(y)) -> +'(x, y)
R
↳DPs
→DP Problem 1
↳Argument Filtering and Ordering
→DP Problem 2
↳Rw
+'(x, s(y)) -> +'(x, y)
f(0) -> 1
f(s(x)) -> g(x, s(x))
g(0, y) -> y
g(s(x), y) -> g(x, +(y, s(x)))
g(s(x), y) -> g(x, s(+(y, x)))
+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))
innermost
+'(x, s(y)) -> +'(x, y)
POL(s(x1)) = 1 + x1 POL(+'(x1, x2)) = x1 + x2
+'(x1, x2) -> +'(x1, x2)
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 3
↳Dependency Graph
→DP Problem 2
↳Rw
f(0) -> 1
f(s(x)) -> g(x, s(x))
g(0, y) -> y
g(s(x), y) -> g(x, +(y, s(x)))
g(s(x), y) -> g(x, s(+(y, x)))
+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))
innermost
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳Rewriting Transformation
G(s(x), y) -> G(x, s(+(y, x)))
G(s(x), y) -> G(x, +(y, s(x)))
f(0) -> 1
f(s(x)) -> g(x, s(x))
g(0, y) -> y
g(s(x), y) -> g(x, +(y, s(x)))
g(s(x), y) -> g(x, s(+(y, x)))
+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))
innermost
one new Dependency Pair is created:
G(s(x), y) -> G(x, +(y, s(x)))
G(s(x), y) -> G(x, s(+(y, x)))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳Rw
→DP Problem 4
↳Argument Filtering and Ordering
G(s(x), y) -> G(x, s(+(y, x)))
G(s(x), y) -> G(x, s(+(y, x)))
f(0) -> 1
f(s(x)) -> g(x, s(x))
g(0, y) -> y
g(s(x), y) -> g(x, +(y, s(x)))
g(s(x), y) -> g(x, s(+(y, x)))
+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))
innermost
G(s(x), y) -> G(x, s(+(y, x)))
POL(s(x1)) = 1 + x1
G(x1, x2) -> x1
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳Rw
→DP Problem 4
↳AFS
...
→DP Problem 5
↳Dependency Graph
f(0) -> 1
f(s(x)) -> g(x, s(x))
g(0, y) -> y
g(s(x), y) -> g(x, +(y, s(x)))
g(s(x), y) -> g(x, s(+(y, x)))
+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))
innermost