R
↳Dependency Pair Analysis
F(s(x)) -> G(x, s(x))
G(s(x), y) -> G(x, +(y, s(x)))
G(s(x), y) -> +'(y, s(x))
G(s(x), y) -> G(x, s(+(y, x)))
G(s(x), y) -> +'(y, x)
+'(x, s(y)) -> +'(x, y)
R
↳DPs
→DP Problem 1
↳Argument Filtering and Ordering
→DP Problem 2
↳Rw
+'(x, s(y)) -> +'(x, y)
f(0) -> 1
f(s(x)) -> g(x, s(x))
g(0, y) -> y
g(s(x), y) -> g(x, +(y, s(x)))
g(s(x), y) -> g(x, s(+(y, x)))
+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))
innermost
+'(x, s(y)) -> +'(x, y)
+'(x1, x2) -> +'(x1, x2)
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 3
↳Dependency Graph
→DP Problem 2
↳Rw
f(0) -> 1
f(s(x)) -> g(x, s(x))
g(0, y) -> y
g(s(x), y) -> g(x, +(y, s(x)))
g(s(x), y) -> g(x, s(+(y, x)))
+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))
innermost
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳Rewriting Transformation
G(s(x), y) -> G(x, s(+(y, x)))
G(s(x), y) -> G(x, +(y, s(x)))
f(0) -> 1
f(s(x)) -> g(x, s(x))
g(0, y) -> y
g(s(x), y) -> g(x, +(y, s(x)))
g(s(x), y) -> g(x, s(+(y, x)))
+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))
innermost
one new Dependency Pair is created:
G(s(x), y) -> G(x, +(y, s(x)))
G(s(x), y) -> G(x, s(+(y, x)))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳Rw
→DP Problem 4
↳Narrowing Transformation
G(s(x), y) -> G(x, s(+(y, x)))
G(s(x), y) -> G(x, s(+(y, x)))
f(0) -> 1
f(s(x)) -> g(x, s(x))
g(0, y) -> y
g(s(x), y) -> g(x, +(y, s(x)))
g(s(x), y) -> g(x, s(+(y, x)))
+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))
innermost
two new Dependency Pairs are created:
G(s(x), y) -> G(x, s(+(y, x)))
G(s(0), y') -> G(0, s(y'))
G(s(s(y'')), y0) -> G(s(y''), s(s(+(y0, y''))))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳Rw
→DP Problem 4
↳Nar
...
→DP Problem 5
↳Narrowing Transformation
G(s(s(y'')), y0) -> G(s(y''), s(s(+(y0, y''))))
G(s(x), y) -> G(x, s(+(y, x)))
f(0) -> 1
f(s(x)) -> g(x, s(x))
g(0, y) -> y
g(s(x), y) -> g(x, +(y, s(x)))
g(s(x), y) -> g(x, s(+(y, x)))
+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))
innermost
two new Dependency Pairs are created:
G(s(x), y) -> G(x, s(+(y, x)))
G(s(0), y') -> G(0, s(y'))
G(s(s(y'')), y0) -> G(s(y''), s(s(+(y0, y''))))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳Rw
→DP Problem 4
↳Nar
...
→DP Problem 6
↳Instantiation Transformation
G(s(s(y'')), y0) -> G(s(y''), s(s(+(y0, y''))))
G(s(s(y'')), y0) -> G(s(y''), s(s(+(y0, y''))))
f(0) -> 1
f(s(x)) -> g(x, s(x))
g(0, y) -> y
g(s(x), y) -> g(x, +(y, s(x)))
g(s(x), y) -> g(x, s(+(y, x)))
+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))
innermost
one new Dependency Pair is created:
G(s(s(y'')), y0) -> G(s(y''), s(s(+(y0, y''))))
G(s(s(y'''')), s(s(x''))) -> G(s(y''''), s(s(+(s(s(x'')), y''''))))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳Rw
→DP Problem 4
↳Nar
...
→DP Problem 7
↳Instantiation Transformation
G(s(s(y'''')), s(s(x''))) -> G(s(y''''), s(s(+(s(s(x'')), y''''))))
G(s(s(y'')), y0) -> G(s(y''), s(s(+(y0, y''))))
f(0) -> 1
f(s(x)) -> g(x, s(x))
g(0, y) -> y
g(s(x), y) -> g(x, +(y, s(x)))
g(s(x), y) -> g(x, s(+(y, x)))
+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))
innermost
two new Dependency Pairs are created:
G(s(s(y'')), y0) -> G(s(y''), s(s(+(y0, y''))))
G(s(s(y'''')), s(s(x''))) -> G(s(y''''), s(s(+(s(s(x'')), y''''))))
G(s(s(y''')), s(s(x''))) -> G(s(y'''), s(s(+(s(s(x'')), y'''))))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳Rw
→DP Problem 4
↳Nar
...
→DP Problem 8
↳Remaining Obligation(s)
G(s(s(y''')), s(s(x''))) -> G(s(y'''), s(s(+(s(s(x'')), y'''))))
G(s(s(y'''')), s(s(x''))) -> G(s(y''''), s(s(+(s(s(x'')), y''''))))
G(s(s(y'''')), s(s(x''))) -> G(s(y''''), s(s(+(s(s(x'')), y''''))))
f(0) -> 1
f(s(x)) -> g(x, s(x))
g(0, y) -> y
g(s(x), y) -> g(x, +(y, s(x)))
g(s(x), y) -> g(x, s(+(y, x)))
+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))
innermost