Term Rewriting System R:
[x]
f(0) -> 1
f(s(x)) -> g(f(x))
f(s(x)) -> +(f(x), s(f(x)))
g(x) -> +(x, s(x))

Innermost Termination of R to be shown.

`   R`
`     ↳Dependency Pair Analysis`

R contains the following Dependency Pairs:

F(s(x)) -> G(f(x))
F(s(x)) -> F(x)

Furthermore, R contains one SCC.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Usable Rules (Innermost)`

Dependency Pair:

F(s(x)) -> F(x)

Rules:

f(0) -> 1
f(s(x)) -> g(f(x))
f(s(x)) -> +(f(x), s(f(x)))
g(x) -> +(x, s(x))

Strategy:

innermost

As we are in the innermost case, we can delete all 4 non-usable-rules.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳UsableRules`
`           →DP Problem 2`
`             ↳Size-Change Principle`

Dependency Pair:

F(s(x)) -> F(x)

Rule:

none

Strategy:

innermost

We number the DPs as follows:
1. F(s(x)) -> F(x)
and get the following Size-Change Graph(s):
{1} , {1}
1>1

which lead(s) to this/these maximal multigraph(s):
{1} , {1}
1>1

DP: empty set
Oriented Rules: none

We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial

with Argument Filtering System:
s(x1) -> s(x1)

We obtain no new DP problems.

Innermost Termination of R successfully shown.
Duration:
0:00 minutes