R
↳Dependency Pair Analysis
F(s(x)) -> G(f(x))
F(s(x)) -> F(x)
R
↳DPs
→DP Problem 1
↳Forward Instantiation Transformation
F(s(x)) -> F(x)
f(0) -> 1
f(s(x)) -> g(f(x))
f(s(x)) -> +(f(x), s(f(x)))
g(x) -> +(x, s(x))
innermost
one new Dependency Pair is created:
F(s(x)) -> F(x)
F(s(s(x''))) -> F(s(x''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Forward Instantiation Transformation
F(s(s(x''))) -> F(s(x''))
f(0) -> 1
f(s(x)) -> g(f(x))
f(s(x)) -> +(f(x), s(f(x)))
g(x) -> +(x, s(x))
innermost
one new Dependency Pair is created:
F(s(s(x''))) -> F(s(x''))
F(s(s(s(x'''')))) -> F(s(s(x'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 3
↳Argument Filtering and Ordering
F(s(s(s(x'''')))) -> F(s(s(x'''')))
f(0) -> 1
f(s(x)) -> g(f(x))
f(s(x)) -> +(f(x), s(f(x)))
g(x) -> +(x, s(x))
innermost
F(s(s(s(x'''')))) -> F(s(s(x'''')))
POL(s(x1)) = 1 + x1 POL(F(x1)) = 1 + x1
F(x1) -> F(x1)
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 4
↳Dependency Graph
f(0) -> 1
f(s(x)) -> g(f(x))
f(s(x)) -> +(f(x), s(f(x)))
g(x) -> +(x, s(x))
innermost