Term Rewriting System R:
[x, y, z]
double(0) -> 0
double(s(x)) -> s(s(double(x)))
half(0) -> 0
half(s(0)) -> 0
half(s(s(x))) -> s(half(x))
half(double(x)) -> x
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
if(0, y, z) -> y
if(s(x), y, z) -> z
Innermost Termination of R to be shown.
R
↳Dependency Pair Analysis
R contains the following Dependency Pairs:
DOUBLE(s(x)) -> DOUBLE(x)
HALF(s(s(x))) -> HALF(x)
-'(s(x), s(y)) -> -'(x, y)
Furthermore, R contains three SCCs.
R
↳DPs
→DP Problem 1
↳Usable Rules (Innermost)
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
Dependency Pair:
DOUBLE(s(x)) -> DOUBLE(x)
Rules:
double(0) -> 0
double(s(x)) -> s(s(double(x)))
half(0) -> 0
half(s(0)) -> 0
half(s(s(x))) -> s(half(x))
half(double(x)) -> x
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
if(0, y, z) -> y
if(s(x), y, z) -> z
Strategy:
innermost
As we are in the innermost case, we can delete all 10 non-usable-rules.
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 4
↳Size-Change Principle
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
Dependency Pair:
DOUBLE(s(x)) -> DOUBLE(x)
Rule:
none
Strategy:
innermost
We number the DPs as follows:
- DOUBLE(s(x)) -> DOUBLE(x)
and get the following Size-Change Graph(s):
which lead(s) to this/these maximal multigraph(s):
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
s(x1) -> s(x1)
We obtain no new DP problems.
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳Usable Rules (Innermost)
→DP Problem 3
↳UsableRules
Dependency Pair:
HALF(s(s(x))) -> HALF(x)
Rules:
double(0) -> 0
double(s(x)) -> s(s(double(x)))
half(0) -> 0
half(s(0)) -> 0
half(s(s(x))) -> s(half(x))
half(double(x)) -> x
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
if(0, y, z) -> y
if(s(x), y, z) -> z
Strategy:
innermost
As we are in the innermost case, we can delete all 10 non-usable-rules.
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 5
↳Size-Change Principle
→DP Problem 3
↳UsableRules
Dependency Pair:
HALF(s(s(x))) -> HALF(x)
Rule:
none
Strategy:
innermost
We number the DPs as follows:
- HALF(s(s(x))) -> HALF(x)
and get the following Size-Change Graph(s):
which lead(s) to this/these maximal multigraph(s):
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
s(x1) -> s(x1)
We obtain no new DP problems.
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳Usable Rules (Innermost)
Dependency Pair:
-'(s(x), s(y)) -> -'(x, y)
Rules:
double(0) -> 0
double(s(x)) -> s(s(double(x)))
half(0) -> 0
half(s(0)) -> 0
half(s(s(x))) -> s(half(x))
half(double(x)) -> x
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
if(0, y, z) -> y
if(s(x), y, z) -> z
Strategy:
innermost
As we are in the innermost case, we can delete all 10 non-usable-rules.
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 6
↳Size-Change Principle
Dependency Pair:
-'(s(x), s(y)) -> -'(x, y)
Rule:
none
Strategy:
innermost
We number the DPs as follows:
- -'(s(x), s(y)) -> -'(x, y)
and get the following Size-Change Graph(s):
which lead(s) to this/these maximal multigraph(s):
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
s(x1) -> s(x1)
We obtain no new DP problems.
Innermost Termination of R successfully shown.
Duration:
0:00 minutes