Term Rewriting System R:
[x, y, z]
double(0) -> 0
double(s(x)) -> s(s(double(x)))
half(0) -> 0
half(s(0)) -> 0
half(s(s(x))) -> s(half(x))
half(double(x)) -> x
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
if(0, y, z) -> y
if(s(x), y, z) -> z

Innermost Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

DOUBLE(s(x)) -> DOUBLE(x)
HALF(s(s(x))) -> HALF(x)
-'(s(x), s(y)) -> -'(x, y)

Furthermore, R contains three SCCs.


   R
DPs
       →DP Problem 1
Polynomial Ordering
       →DP Problem 2
Polo
       →DP Problem 3
Polo


Dependency Pair:

DOUBLE(s(x)) -> DOUBLE(x)


Rules:


double(0) -> 0
double(s(x)) -> s(s(double(x)))
half(0) -> 0
half(s(0)) -> 0
half(s(s(x))) -> s(half(x))
half(double(x)) -> x
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
if(0, y, z) -> y
if(s(x), y, z) -> z


Strategy:

innermost




The following dependency pair can be strictly oriented:

DOUBLE(s(x)) -> DOUBLE(x)


There are no usable rules for innermost that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(DOUBLE(x1))=  x1  
  POL(s(x1))=  1 + x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
           →DP Problem 4
Dependency Graph
       →DP Problem 2
Polo
       →DP Problem 3
Polo


Dependency Pair:


Rules:


double(0) -> 0
double(s(x)) -> s(s(double(x)))
half(0) -> 0
half(s(0)) -> 0
half(s(s(x))) -> s(half(x))
half(double(x)) -> x
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
if(0, y, z) -> y
if(s(x), y, z) -> z


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polynomial Ordering
       →DP Problem 3
Polo


Dependency Pair:

HALF(s(s(x))) -> HALF(x)


Rules:


double(0) -> 0
double(s(x)) -> s(s(double(x)))
half(0) -> 0
half(s(0)) -> 0
half(s(s(x))) -> s(half(x))
half(double(x)) -> x
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
if(0, y, z) -> y
if(s(x), y, z) -> z


Strategy:

innermost




The following dependency pair can be strictly oriented:

HALF(s(s(x))) -> HALF(x)


There are no usable rules for innermost that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(HALF(x1))=  1 + x1  
  POL(s(x1))=  1 + x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
           →DP Problem 5
Dependency Graph
       →DP Problem 3
Polo


Dependency Pair:


Rules:


double(0) -> 0
double(s(x)) -> s(s(double(x)))
half(0) -> 0
half(s(0)) -> 0
half(s(s(x))) -> s(half(x))
half(double(x)) -> x
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
if(0, y, z) -> y
if(s(x), y, z) -> z


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polynomial Ordering


Dependency Pair:

-'(s(x), s(y)) -> -'(x, y)


Rules:


double(0) -> 0
double(s(x)) -> s(s(double(x)))
half(0) -> 0
half(s(0)) -> 0
half(s(s(x))) -> s(half(x))
half(double(x)) -> x
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
if(0, y, z) -> y
if(s(x), y, z) -> z


Strategy:

innermost




The following dependency pair can be strictly oriented:

-'(s(x), s(y)) -> -'(x, y)


There are no usable rules for innermost that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(-'(x1, x2))=  x1  
  POL(s(x1))=  1 + x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
           →DP Problem 6
Dependency Graph


Dependency Pair:


Rules:


double(0) -> 0
double(s(x)) -> s(s(double(x)))
half(0) -> 0
half(s(0)) -> 0
half(s(s(x))) -> s(half(x))
half(double(x)) -> x
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
if(0, y, z) -> y
if(s(x), y, z) -> z


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.

Innermost Termination of R successfully shown.
Duration:
0:00 minutes