R
↳Dependency Pair Analysis
DOUBLE(s(x)) -> DOUBLE(x)
HALF(s(s(x))) -> HALF(x)
-'(s(x), s(y)) -> -'(x, y)
R
↳DPs
→DP Problem 1
↳Forward Instantiation Transformation
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
DOUBLE(s(x)) -> DOUBLE(x)
double(0) -> 0
double(s(x)) -> s(s(double(x)))
half(0) -> 0
half(s(0)) -> 0
half(s(s(x))) -> s(half(x))
half(double(x)) -> x
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
if(0, y, z) -> y
if(s(x), y, z) -> z
innermost
one new Dependency Pair is created:
DOUBLE(s(x)) -> DOUBLE(x)
DOUBLE(s(s(x''))) -> DOUBLE(s(x''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 4
↳Forward Instantiation Transformation
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
DOUBLE(s(s(x''))) -> DOUBLE(s(x''))
double(0) -> 0
double(s(x)) -> s(s(double(x)))
half(0) -> 0
half(s(0)) -> 0
half(s(s(x))) -> s(half(x))
half(double(x)) -> x
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
if(0, y, z) -> y
if(s(x), y, z) -> z
innermost
one new Dependency Pair is created:
DOUBLE(s(s(x''))) -> DOUBLE(s(x''))
DOUBLE(s(s(s(x'''')))) -> DOUBLE(s(s(x'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 4
↳FwdInst
...
→DP Problem 5
↳Argument Filtering and Ordering
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
DOUBLE(s(s(s(x'''')))) -> DOUBLE(s(s(x'''')))
double(0) -> 0
double(s(x)) -> s(s(double(x)))
half(0) -> 0
half(s(0)) -> 0
half(s(s(x))) -> s(half(x))
half(double(x)) -> x
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
if(0, y, z) -> y
if(s(x), y, z) -> z
innermost
DOUBLE(s(s(s(x'''')))) -> DOUBLE(s(s(x'''')))
trivial
DOUBLE(x1) -> DOUBLE(x1)
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 4
↳FwdInst
...
→DP Problem 6
↳Dependency Graph
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
double(0) -> 0
double(s(x)) -> s(s(double(x)))
half(0) -> 0
half(s(0)) -> 0
half(s(s(x))) -> s(half(x))
half(double(x)) -> x
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
if(0, y, z) -> y
if(s(x), y, z) -> z
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Forward Instantiation Transformation
→DP Problem 3
↳FwdInst
HALF(s(s(x))) -> HALF(x)
double(0) -> 0
double(s(x)) -> s(s(double(x)))
half(0) -> 0
half(s(0)) -> 0
half(s(s(x))) -> s(half(x))
half(double(x)) -> x
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
if(0, y, z) -> y
if(s(x), y, z) -> z
innermost
one new Dependency Pair is created:
HALF(s(s(x))) -> HALF(x)
HALF(s(s(s(s(x''))))) -> HALF(s(s(x'')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 7
↳Forward Instantiation Transformation
→DP Problem 3
↳FwdInst
HALF(s(s(s(s(x''))))) -> HALF(s(s(x'')))
double(0) -> 0
double(s(x)) -> s(s(double(x)))
half(0) -> 0
half(s(0)) -> 0
half(s(s(x))) -> s(half(x))
half(double(x)) -> x
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
if(0, y, z) -> y
if(s(x), y, z) -> z
innermost
one new Dependency Pair is created:
HALF(s(s(s(s(x''))))) -> HALF(s(s(x'')))
HALF(s(s(s(s(s(s(x''''))))))) -> HALF(s(s(s(s(x'''')))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 7
↳FwdInst
...
→DP Problem 8
↳Argument Filtering and Ordering
→DP Problem 3
↳FwdInst
HALF(s(s(s(s(s(s(x''''))))))) -> HALF(s(s(s(s(x'''')))))
double(0) -> 0
double(s(x)) -> s(s(double(x)))
half(0) -> 0
half(s(0)) -> 0
half(s(s(x))) -> s(half(x))
half(double(x)) -> x
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
if(0, y, z) -> y
if(s(x), y, z) -> z
innermost
HALF(s(s(s(s(s(s(x''''))))))) -> HALF(s(s(s(s(x'''')))))
trivial
HALF(x1) -> HALF(x1)
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 7
↳FwdInst
...
→DP Problem 9
↳Dependency Graph
→DP Problem 3
↳FwdInst
double(0) -> 0
double(s(x)) -> s(s(double(x)))
half(0) -> 0
half(s(0)) -> 0
half(s(s(x))) -> s(half(x))
half(double(x)) -> x
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
if(0, y, z) -> y
if(s(x), y, z) -> z
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Forward Instantiation Transformation
-'(s(x), s(y)) -> -'(x, y)
double(0) -> 0
double(s(x)) -> s(s(double(x)))
half(0) -> 0
half(s(0)) -> 0
half(s(s(x))) -> s(half(x))
half(double(x)) -> x
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
if(0, y, z) -> y
if(s(x), y, z) -> z
innermost
one new Dependency Pair is created:
-'(s(x), s(y)) -> -'(x, y)
-'(s(s(x'')), s(s(y''))) -> -'(s(x''), s(y''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 10
↳Forward Instantiation Transformation
-'(s(s(x'')), s(s(y''))) -> -'(s(x''), s(y''))
double(0) -> 0
double(s(x)) -> s(s(double(x)))
half(0) -> 0
half(s(0)) -> 0
half(s(s(x))) -> s(half(x))
half(double(x)) -> x
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
if(0, y, z) -> y
if(s(x), y, z) -> z
innermost
one new Dependency Pair is created:
-'(s(s(x'')), s(s(y''))) -> -'(s(x''), s(y''))
-'(s(s(s(x''''))), s(s(s(y'''')))) -> -'(s(s(x'''')), s(s(y'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 10
↳FwdInst
...
→DP Problem 11
↳Argument Filtering and Ordering
-'(s(s(s(x''''))), s(s(s(y'''')))) -> -'(s(s(x'''')), s(s(y'''')))
double(0) -> 0
double(s(x)) -> s(s(double(x)))
half(0) -> 0
half(s(0)) -> 0
half(s(s(x))) -> s(half(x))
half(double(x)) -> x
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
if(0, y, z) -> y
if(s(x), y, z) -> z
innermost
-'(s(s(s(x''''))), s(s(s(y'''')))) -> -'(s(s(x'''')), s(s(y'''')))
trivial
-'(x1, x2) -> -'(x1, x2)
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 10
↳FwdInst
...
→DP Problem 12
↳Dependency Graph
double(0) -> 0
double(s(x)) -> s(s(double(x)))
half(0) -> 0
half(s(0)) -> 0
half(s(s(x))) -> s(half(x))
half(double(x)) -> x
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
if(0, y, z) -> y
if(s(x), y, z) -> z
innermost