R
↳Dependency Pair Analysis
+'(s(x), y) -> +'(x, y)
+'(p(x), y) -> +'(x, y)
MINUS(s(x)) -> MINUS(x)
MINUS(p(x)) -> MINUS(x)
*'(s(x), y) -> +'(*(x, y), y)
*'(s(x), y) -> *'(x, y)
*'(p(x), y) -> +'(*(x, y), minus(y))
*'(p(x), y) -> *'(x, y)
*'(p(x), y) -> MINUS(y)
R
↳DPs
→DP Problem 1
↳Forward Instantiation Transformation
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
+'(p(x), y) -> +'(x, y)
+'(s(x), y) -> +'(x, y)
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
+(p(x), y) -> p(+(x, y))
minus(0) -> 0
minus(s(x)) -> p(minus(x))
minus(p(x)) -> s(minus(x))
*(0, y) -> 0
*(s(x), y) -> +(*(x, y), y)
*(p(x), y) -> +(*(x, y), minus(y))
innermost
two new Dependency Pairs are created:
+'(s(x), y) -> +'(x, y)
+'(s(s(x'')), y'') -> +'(s(x''), y'')
+'(s(p(x'')), y'') -> +'(p(x''), y'')
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 4
↳Forward Instantiation Transformation
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
+'(s(p(x'')), y'') -> +'(p(x''), y'')
+'(s(s(x'')), y'') -> +'(s(x''), y'')
+'(p(x), y) -> +'(x, y)
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
+(p(x), y) -> p(+(x, y))
minus(0) -> 0
minus(s(x)) -> p(minus(x))
minus(p(x)) -> s(minus(x))
*(0, y) -> 0
*(s(x), y) -> +(*(x, y), y)
*(p(x), y) -> +(*(x, y), minus(y))
innermost
three new Dependency Pairs are created:
+'(p(x), y) -> +'(x, y)
+'(p(p(x'')), y'') -> +'(p(x''), y'')
+'(p(s(s(x''''))), y') -> +'(s(s(x'''')), y')
+'(p(s(p(x''''))), y') -> +'(s(p(x'''')), y')
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 4
↳FwdInst
...
→DP Problem 5
↳Forward Instantiation Transformation
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
+'(p(s(p(x''''))), y') -> +'(s(p(x'''')), y')
+'(s(s(x'')), y'') -> +'(s(x''), y'')
+'(p(s(s(x''''))), y') -> +'(s(s(x'''')), y')
+'(p(p(x'')), y'') -> +'(p(x''), y'')
+'(s(p(x'')), y'') -> +'(p(x''), y'')
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
+(p(x), y) -> p(+(x, y))
minus(0) -> 0
minus(s(x)) -> p(minus(x))
minus(p(x)) -> s(minus(x))
*(0, y) -> 0
*(s(x), y) -> +(*(x, y), y)
*(p(x), y) -> +(*(x, y), minus(y))
innermost
two new Dependency Pairs are created:
+'(s(s(x'')), y'') -> +'(s(x''), y'')
+'(s(s(s(x''''))), y'''') -> +'(s(s(x'''')), y'''')
+'(s(s(p(x''''))), y'''') -> +'(s(p(x'''')), y'''')
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 4
↳FwdInst
...
→DP Problem 6
↳Forward Instantiation Transformation
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
+'(s(s(p(x''''))), y'''') -> +'(s(p(x'''')), y'''')
+'(s(s(s(x''''))), y'''') -> +'(s(s(x'''')), y'''')
+'(p(s(s(x''''))), y') -> +'(s(s(x'''')), y')
+'(p(p(x'')), y'') -> +'(p(x''), y'')
+'(s(p(x'')), y'') -> +'(p(x''), y'')
+'(p(s(p(x''''))), y') -> +'(s(p(x'''')), y')
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
+(p(x), y) -> p(+(x, y))
minus(0) -> 0
minus(s(x)) -> p(minus(x))
minus(p(x)) -> s(minus(x))
*(0, y) -> 0
*(s(x), y) -> +(*(x, y), y)
*(p(x), y) -> +(*(x, y), minus(y))
innermost
three new Dependency Pairs are created:
+'(s(p(x'')), y'') -> +'(p(x''), y'')
+'(s(p(p(x''''))), y'''') -> +'(p(p(x'''')), y'''')
+'(s(p(s(s(x'''''')))), y'''') -> +'(p(s(s(x''''''))), y'''')
+'(s(p(s(p(x'''''')))), y'''') -> +'(p(s(p(x''''''))), y'''')
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 4
↳FwdInst
...
→DP Problem 7
↳Forward Instantiation Transformation
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
+'(s(p(s(p(x'''''')))), y'''') -> +'(p(s(p(x''''''))), y'''')
+'(s(p(s(s(x'''''')))), y'''') -> +'(p(s(s(x''''''))), y'''')
+'(p(s(p(x''''))), y') -> +'(s(p(x'''')), y')
+'(s(s(s(x''''))), y'''') -> +'(s(s(x'''')), y'''')
+'(p(s(s(x''''))), y') -> +'(s(s(x'''')), y')
+'(p(p(x'')), y'') -> +'(p(x''), y'')
+'(s(p(p(x''''))), y'''') -> +'(p(p(x'''')), y'''')
+'(s(s(p(x''''))), y'''') -> +'(s(p(x'''')), y'''')
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
+(p(x), y) -> p(+(x, y))
minus(0) -> 0
minus(s(x)) -> p(minus(x))
minus(p(x)) -> s(minus(x))
*(0, y) -> 0
*(s(x), y) -> +(*(x, y), y)
*(p(x), y) -> +(*(x, y), minus(y))
innermost
three new Dependency Pairs are created:
+'(p(p(x'')), y'') -> +'(p(x''), y'')
+'(p(p(p(x''''))), y'''') -> +'(p(p(x'''')), y'''')
+'(p(p(s(s(x'''''')))), y'''') -> +'(p(s(s(x''''''))), y'''')
+'(p(p(s(p(x'''''')))), y'''') -> +'(p(s(p(x''''''))), y'''')
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 4
↳FwdInst
...
→DP Problem 8
↳Forward Instantiation Transformation
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
+'(p(p(s(p(x'''''')))), y'''') -> +'(p(s(p(x''''''))), y'''')
+'(s(p(s(s(x'''''')))), y'''') -> +'(p(s(s(x''''''))), y'''')
+'(s(s(p(x''''))), y'''') -> +'(s(p(x'''')), y'''')
+'(s(s(s(x''''))), y'''') -> +'(s(s(x'''')), y'''')
+'(p(s(s(x''''))), y') -> +'(s(s(x'''')), y')
+'(p(p(s(s(x'''''')))), y'''') -> +'(p(s(s(x''''''))), y'''')
+'(p(p(p(x''''))), y'''') -> +'(p(p(x'''')), y'''')
+'(s(p(p(x''''))), y'''') -> +'(p(p(x'''')), y'''')
+'(p(s(p(x''''))), y') -> +'(s(p(x'''')), y')
+'(s(p(s(p(x'''''')))), y'''') -> +'(p(s(p(x''''''))), y'''')
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
+(p(x), y) -> p(+(x, y))
minus(0) -> 0
minus(s(x)) -> p(minus(x))
minus(p(x)) -> s(minus(x))
*(0, y) -> 0
*(s(x), y) -> +(*(x, y), y)
*(p(x), y) -> +(*(x, y), minus(y))
innermost
two new Dependency Pairs are created:
+'(p(s(s(x''''))), y') -> +'(s(s(x'''')), y')
+'(p(s(s(s(x'''''')))), y'') -> +'(s(s(s(x''''''))), y'')
+'(p(s(s(p(x'''''')))), y'') -> +'(s(s(p(x''''''))), y'')
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 4
↳FwdInst
...
→DP Problem 9
↳Forward Instantiation Transformation
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
+'(s(p(s(p(x'''''')))), y'''') -> +'(p(s(p(x''''''))), y'''')
+'(p(s(s(p(x'''''')))), y'') -> +'(s(s(p(x''''''))), y'')
+'(s(p(s(s(x'''''')))), y'''') -> +'(p(s(s(x''''''))), y'''')
+'(s(s(p(x''''))), y'''') -> +'(s(p(x'''')), y'''')
+'(s(s(s(x''''))), y'''') -> +'(s(s(x'''')), y'''')
+'(p(s(s(s(x'''''')))), y'') -> +'(s(s(s(x''''''))), y'')
+'(p(p(s(s(x'''''')))), y'''') -> +'(p(s(s(x''''''))), y'''')
+'(p(p(p(x''''))), y'''') -> +'(p(p(x'''')), y'''')
+'(s(p(p(x''''))), y'''') -> +'(p(p(x'''')), y'''')
+'(p(s(p(x''''))), y') -> +'(s(p(x'''')), y')
+'(p(p(s(p(x'''''')))), y'''') -> +'(p(s(p(x''''''))), y'''')
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
+(p(x), y) -> p(+(x, y))
minus(0) -> 0
minus(s(x)) -> p(minus(x))
minus(p(x)) -> s(minus(x))
*(0, y) -> 0
*(s(x), y) -> +(*(x, y), y)
*(p(x), y) -> +(*(x, y), minus(y))
innermost
three new Dependency Pairs are created:
+'(p(s(p(x''''))), y') -> +'(s(p(x'''')), y')
+'(p(s(p(p(x'''''')))), y'') -> +'(s(p(p(x''''''))), y'')
+'(p(s(p(s(s(x''''''''))))), y'') -> +'(s(p(s(s(x'''''''')))), y'')
+'(p(s(p(s(p(x''''''''))))), y'') -> +'(s(p(s(p(x'''''''')))), y'')
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 4
↳FwdInst
...
→DP Problem 10
↳Polynomial Ordering
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
+'(p(s(p(s(p(x''''''''))))), y'') -> +'(s(p(s(p(x'''''''')))), y'')
+'(p(s(p(s(s(x''''''''))))), y'') -> +'(s(p(s(s(x'''''''')))), y'')
+'(p(p(s(p(x'''''')))), y'''') -> +'(p(s(p(x''''''))), y'''')
+'(p(s(s(p(x'''''')))), y'') -> +'(s(s(p(x''''''))), y'')
+'(s(p(s(s(x'''''')))), y'''') -> +'(p(s(s(x''''''))), y'''')
+'(s(s(p(x''''))), y'''') -> +'(s(p(x'''')), y'''')
+'(s(s(s(x''''))), y'''') -> +'(s(s(x'''')), y'''')
+'(p(s(s(s(x'''''')))), y'') -> +'(s(s(s(x''''''))), y'')
+'(p(p(s(s(x'''''')))), y'''') -> +'(p(s(s(x''''''))), y'''')
+'(p(p(p(x''''))), y'''') -> +'(p(p(x'''')), y'''')
+'(s(p(p(x''''))), y'''') -> +'(p(p(x'''')), y'''')
+'(p(s(p(p(x'''''')))), y'') -> +'(s(p(p(x''''''))), y'')
+'(s(p(s(p(x'''''')))), y'''') -> +'(p(s(p(x''''''))), y'''')
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
+(p(x), y) -> p(+(x, y))
minus(0) -> 0
minus(s(x)) -> p(minus(x))
minus(p(x)) -> s(minus(x))
*(0, y) -> 0
*(s(x), y) -> +(*(x, y), y)
*(p(x), y) -> +(*(x, y), minus(y))
innermost
+'(p(s(p(s(p(x''''''''))))), y'') -> +'(s(p(s(p(x'''''''')))), y'')
+'(p(s(p(s(s(x''''''''))))), y'') -> +'(s(p(s(s(x'''''''')))), y'')
+'(p(p(s(p(x'''''')))), y'''') -> +'(p(s(p(x''''''))), y'''')
+'(p(s(s(p(x'''''')))), y'') -> +'(s(s(p(x''''''))), y'')
+'(p(s(s(s(x'''''')))), y'') -> +'(s(s(s(x''''''))), y'')
+'(p(p(s(s(x'''''')))), y'''') -> +'(p(s(s(x''''''))), y'''')
+'(p(p(p(x''''))), y'''') -> +'(p(p(x'''')), y'''')
+'(p(s(p(p(x'''''')))), y'') -> +'(s(p(p(x''''''))), y'')
POL(s(x1)) = x1 POL(+'(x1, x2)) = 1 + x1 + x2 POL(p(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 4
↳FwdInst
...
→DP Problem 11
↳Dependency Graph
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
+'(s(p(s(s(x'''''')))), y'''') -> +'(p(s(s(x''''''))), y'''')
+'(s(s(p(x''''))), y'''') -> +'(s(p(x'''')), y'''')
+'(s(s(s(x''''))), y'''') -> +'(s(s(x'''')), y'''')
+'(s(p(p(x''''))), y'''') -> +'(p(p(x'''')), y'''')
+'(s(p(s(p(x'''''')))), y'''') -> +'(p(s(p(x''''''))), y'''')
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
+(p(x), y) -> p(+(x, y))
minus(0) -> 0
minus(s(x)) -> p(minus(x))
minus(p(x)) -> s(minus(x))
*(0, y) -> 0
*(s(x), y) -> +(*(x, y), y)
*(p(x), y) -> +(*(x, y), minus(y))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 4
↳FwdInst
...
→DP Problem 12
↳Polynomial Ordering
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
+'(s(s(s(x''''))), y'''') -> +'(s(s(x'''')), y'''')
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
+(p(x), y) -> p(+(x, y))
minus(0) -> 0
minus(s(x)) -> p(minus(x))
minus(p(x)) -> s(minus(x))
*(0, y) -> 0
*(s(x), y) -> +(*(x, y), y)
*(p(x), y) -> +(*(x, y), minus(y))
innermost
+'(s(s(s(x''''))), y'''') -> +'(s(s(x'''')), y'''')
POL(s(x1)) = 1 + x1 POL(+'(x1, x2)) = 1 + x1
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 4
↳FwdInst
...
→DP Problem 13
↳Dependency Graph
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
+(p(x), y) -> p(+(x, y))
minus(0) -> 0
minus(s(x)) -> p(minus(x))
minus(p(x)) -> s(minus(x))
*(0, y) -> 0
*(s(x), y) -> +(*(x, y), y)
*(p(x), y) -> +(*(x, y), minus(y))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Forward Instantiation Transformation
→DP Problem 3
↳FwdInst
MINUS(p(x)) -> MINUS(x)
MINUS(s(x)) -> MINUS(x)
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
+(p(x), y) -> p(+(x, y))
minus(0) -> 0
minus(s(x)) -> p(minus(x))
minus(p(x)) -> s(minus(x))
*(0, y) -> 0
*(s(x), y) -> +(*(x, y), y)
*(p(x), y) -> +(*(x, y), minus(y))
innermost
two new Dependency Pairs are created:
MINUS(s(x)) -> MINUS(x)
MINUS(s(s(x''))) -> MINUS(s(x''))
MINUS(s(p(x''))) -> MINUS(p(x''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 14
↳Forward Instantiation Transformation
→DP Problem 3
↳FwdInst
MINUS(s(p(x''))) -> MINUS(p(x''))
MINUS(s(s(x''))) -> MINUS(s(x''))
MINUS(p(x)) -> MINUS(x)
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
+(p(x), y) -> p(+(x, y))
minus(0) -> 0
minus(s(x)) -> p(minus(x))
minus(p(x)) -> s(minus(x))
*(0, y) -> 0
*(s(x), y) -> +(*(x, y), y)
*(p(x), y) -> +(*(x, y), minus(y))
innermost
three new Dependency Pairs are created:
MINUS(p(x)) -> MINUS(x)
MINUS(p(p(x''))) -> MINUS(p(x''))
MINUS(p(s(s(x'''')))) -> MINUS(s(s(x'''')))
MINUS(p(s(p(x'''')))) -> MINUS(s(p(x'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 14
↳FwdInst
...
→DP Problem 15
↳Forward Instantiation Transformation
→DP Problem 3
↳FwdInst
MINUS(p(s(p(x'''')))) -> MINUS(s(p(x'''')))
MINUS(s(s(x''))) -> MINUS(s(x''))
MINUS(p(s(s(x'''')))) -> MINUS(s(s(x'''')))
MINUS(p(p(x''))) -> MINUS(p(x''))
MINUS(s(p(x''))) -> MINUS(p(x''))
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
+(p(x), y) -> p(+(x, y))
minus(0) -> 0
minus(s(x)) -> p(minus(x))
minus(p(x)) -> s(minus(x))
*(0, y) -> 0
*(s(x), y) -> +(*(x, y), y)
*(p(x), y) -> +(*(x, y), minus(y))
innermost
two new Dependency Pairs are created:
MINUS(s(s(x''))) -> MINUS(s(x''))
MINUS(s(s(s(x'''')))) -> MINUS(s(s(x'''')))
MINUS(s(s(p(x'''')))) -> MINUS(s(p(x'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 14
↳FwdInst
...
→DP Problem 16
↳Forward Instantiation Transformation
→DP Problem 3
↳FwdInst
MINUS(s(s(p(x'''')))) -> MINUS(s(p(x'''')))
MINUS(s(s(s(x'''')))) -> MINUS(s(s(x'''')))
MINUS(p(s(s(x'''')))) -> MINUS(s(s(x'''')))
MINUS(p(p(x''))) -> MINUS(p(x''))
MINUS(s(p(x''))) -> MINUS(p(x''))
MINUS(p(s(p(x'''')))) -> MINUS(s(p(x'''')))
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
+(p(x), y) -> p(+(x, y))
minus(0) -> 0
minus(s(x)) -> p(minus(x))
minus(p(x)) -> s(minus(x))
*(0, y) -> 0
*(s(x), y) -> +(*(x, y), y)
*(p(x), y) -> +(*(x, y), minus(y))
innermost
three new Dependency Pairs are created:
MINUS(s(p(x''))) -> MINUS(p(x''))
MINUS(s(p(p(x'''')))) -> MINUS(p(p(x'''')))
MINUS(s(p(s(s(x''''''))))) -> MINUS(p(s(s(x''''''))))
MINUS(s(p(s(p(x''''''))))) -> MINUS(p(s(p(x''''''))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 14
↳FwdInst
...
→DP Problem 17
↳Forward Instantiation Transformation
→DP Problem 3
↳FwdInst
MINUS(s(p(s(p(x''''''))))) -> MINUS(p(s(p(x''''''))))
MINUS(s(p(s(s(x''''''))))) -> MINUS(p(s(s(x''''''))))
MINUS(p(s(p(x'''')))) -> MINUS(s(p(x'''')))
MINUS(s(s(s(x'''')))) -> MINUS(s(s(x'''')))
MINUS(p(s(s(x'''')))) -> MINUS(s(s(x'''')))
MINUS(p(p(x''))) -> MINUS(p(x''))
MINUS(s(p(p(x'''')))) -> MINUS(p(p(x'''')))
MINUS(s(s(p(x'''')))) -> MINUS(s(p(x'''')))
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
+(p(x), y) -> p(+(x, y))
minus(0) -> 0
minus(s(x)) -> p(minus(x))
minus(p(x)) -> s(minus(x))
*(0, y) -> 0
*(s(x), y) -> +(*(x, y), y)
*(p(x), y) -> +(*(x, y), minus(y))
innermost
three new Dependency Pairs are created:
MINUS(p(p(x''))) -> MINUS(p(x''))
MINUS(p(p(p(x'''')))) -> MINUS(p(p(x'''')))
MINUS(p(p(s(s(x''''''))))) -> MINUS(p(s(s(x''''''))))
MINUS(p(p(s(p(x''''''))))) -> MINUS(p(s(p(x''''''))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 14
↳FwdInst
...
→DP Problem 18
↳Forward Instantiation Transformation
→DP Problem 3
↳FwdInst
MINUS(p(p(s(p(x''''''))))) -> MINUS(p(s(p(x''''''))))
MINUS(s(p(s(s(x''''''))))) -> MINUS(p(s(s(x''''''))))
MINUS(s(s(p(x'''')))) -> MINUS(s(p(x'''')))
MINUS(s(s(s(x'''')))) -> MINUS(s(s(x'''')))
MINUS(p(s(s(x'''')))) -> MINUS(s(s(x'''')))
MINUS(p(p(s(s(x''''''))))) -> MINUS(p(s(s(x''''''))))
MINUS(p(p(p(x'''')))) -> MINUS(p(p(x'''')))
MINUS(s(p(p(x'''')))) -> MINUS(p(p(x'''')))
MINUS(p(s(p(x'''')))) -> MINUS(s(p(x'''')))
MINUS(s(p(s(p(x''''''))))) -> MINUS(p(s(p(x''''''))))
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
+(p(x), y) -> p(+(x, y))
minus(0) -> 0
minus(s(x)) -> p(minus(x))
minus(p(x)) -> s(minus(x))
*(0, y) -> 0
*(s(x), y) -> +(*(x, y), y)
*(p(x), y) -> +(*(x, y), minus(y))
innermost
two new Dependency Pairs are created:
MINUS(p(s(s(x'''')))) -> MINUS(s(s(x'''')))
MINUS(p(s(s(s(x''''''))))) -> MINUS(s(s(s(x''''''))))
MINUS(p(s(s(p(x''''''))))) -> MINUS(s(s(p(x''''''))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 14
↳FwdInst
...
→DP Problem 19
↳Forward Instantiation Transformation
→DP Problem 3
↳FwdInst
MINUS(s(p(s(p(x''''''))))) -> MINUS(p(s(p(x''''''))))
MINUS(p(s(s(p(x''''''))))) -> MINUS(s(s(p(x''''''))))
MINUS(s(p(s(s(x''''''))))) -> MINUS(p(s(s(x''''''))))
MINUS(s(s(p(x'''')))) -> MINUS(s(p(x'''')))
MINUS(s(s(s(x'''')))) -> MINUS(s(s(x'''')))
MINUS(p(s(s(s(x''''''))))) -> MINUS(s(s(s(x''''''))))
MINUS(p(p(s(s(x''''''))))) -> MINUS(p(s(s(x''''''))))
MINUS(p(p(p(x'''')))) -> MINUS(p(p(x'''')))
MINUS(s(p(p(x'''')))) -> MINUS(p(p(x'''')))
MINUS(p(s(p(x'''')))) -> MINUS(s(p(x'''')))
MINUS(p(p(s(p(x''''''))))) -> MINUS(p(s(p(x''''''))))
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
+(p(x), y) -> p(+(x, y))
minus(0) -> 0
minus(s(x)) -> p(minus(x))
minus(p(x)) -> s(minus(x))
*(0, y) -> 0
*(s(x), y) -> +(*(x, y), y)
*(p(x), y) -> +(*(x, y), minus(y))
innermost
three new Dependency Pairs are created:
MINUS(p(s(p(x'''')))) -> MINUS(s(p(x'''')))
MINUS(p(s(p(p(x''''''))))) -> MINUS(s(p(p(x''''''))))
MINUS(p(s(p(s(s(x'''''''')))))) -> MINUS(s(p(s(s(x'''''''')))))
MINUS(p(s(p(s(p(x'''''''')))))) -> MINUS(s(p(s(p(x'''''''')))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 14
↳FwdInst
...
→DP Problem 20
↳Polynomial Ordering
→DP Problem 3
↳FwdInst
MINUS(p(s(p(s(p(x'''''''')))))) -> MINUS(s(p(s(p(x'''''''')))))
MINUS(p(s(p(s(s(x'''''''')))))) -> MINUS(s(p(s(s(x'''''''')))))
MINUS(p(p(s(p(x''''''))))) -> MINUS(p(s(p(x''''''))))
MINUS(p(s(s(p(x''''''))))) -> MINUS(s(s(p(x''''''))))
MINUS(s(p(s(s(x''''''))))) -> MINUS(p(s(s(x''''''))))
MINUS(s(s(p(x'''')))) -> MINUS(s(p(x'''')))
MINUS(s(s(s(x'''')))) -> MINUS(s(s(x'''')))
MINUS(p(s(s(s(x''''''))))) -> MINUS(s(s(s(x''''''))))
MINUS(p(p(s(s(x''''''))))) -> MINUS(p(s(s(x''''''))))
MINUS(p(p(p(x'''')))) -> MINUS(p(p(x'''')))
MINUS(s(p(p(x'''')))) -> MINUS(p(p(x'''')))
MINUS(p(s(p(p(x''''''))))) -> MINUS(s(p(p(x''''''))))
MINUS(s(p(s(p(x''''''))))) -> MINUS(p(s(p(x''''''))))
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
+(p(x), y) -> p(+(x, y))
minus(0) -> 0
minus(s(x)) -> p(minus(x))
minus(p(x)) -> s(minus(x))
*(0, y) -> 0
*(s(x), y) -> +(*(x, y), y)
*(p(x), y) -> +(*(x, y), minus(y))
innermost
MINUS(p(s(p(s(p(x'''''''')))))) -> MINUS(s(p(s(p(x'''''''')))))
MINUS(p(s(p(s(s(x'''''''')))))) -> MINUS(s(p(s(s(x'''''''')))))
MINUS(p(p(s(p(x''''''))))) -> MINUS(p(s(p(x''''''))))
MINUS(p(s(s(p(x''''''))))) -> MINUS(s(s(p(x''''''))))
MINUS(p(s(s(s(x''''''))))) -> MINUS(s(s(s(x''''''))))
MINUS(p(p(s(s(x''''''))))) -> MINUS(p(s(s(x''''''))))
MINUS(p(p(p(x'''')))) -> MINUS(p(p(x'''')))
MINUS(p(s(p(p(x''''''))))) -> MINUS(s(p(p(x''''''))))
POL(MINUS(x1)) = 1 + x1 POL(s(x1)) = x1 POL(p(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 14
↳FwdInst
...
→DP Problem 21
↳Dependency Graph
→DP Problem 3
↳FwdInst
MINUS(s(p(s(s(x''''''))))) -> MINUS(p(s(s(x''''''))))
MINUS(s(s(p(x'''')))) -> MINUS(s(p(x'''')))
MINUS(s(s(s(x'''')))) -> MINUS(s(s(x'''')))
MINUS(s(p(p(x'''')))) -> MINUS(p(p(x'''')))
MINUS(s(p(s(p(x''''''))))) -> MINUS(p(s(p(x''''''))))
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
+(p(x), y) -> p(+(x, y))
minus(0) -> 0
minus(s(x)) -> p(minus(x))
minus(p(x)) -> s(minus(x))
*(0, y) -> 0
*(s(x), y) -> +(*(x, y), y)
*(p(x), y) -> +(*(x, y), minus(y))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 14
↳FwdInst
...
→DP Problem 22
↳Polynomial Ordering
→DP Problem 3
↳FwdInst
MINUS(s(s(s(x'''')))) -> MINUS(s(s(x'''')))
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
+(p(x), y) -> p(+(x, y))
minus(0) -> 0
minus(s(x)) -> p(minus(x))
minus(p(x)) -> s(minus(x))
*(0, y) -> 0
*(s(x), y) -> +(*(x, y), y)
*(p(x), y) -> +(*(x, y), minus(y))
innermost
MINUS(s(s(s(x'''')))) -> MINUS(s(s(x'''')))
POL(MINUS(x1)) = 1 + x1 POL(s(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 14
↳FwdInst
...
→DP Problem 23
↳Dependency Graph
→DP Problem 3
↳FwdInst
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
+(p(x), y) -> p(+(x, y))
minus(0) -> 0
minus(s(x)) -> p(minus(x))
minus(p(x)) -> s(minus(x))
*(0, y) -> 0
*(s(x), y) -> +(*(x, y), y)
*(p(x), y) -> +(*(x, y), minus(y))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Forward Instantiation Transformation
*'(p(x), y) -> *'(x, y)
*'(s(x), y) -> *'(x, y)
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
+(p(x), y) -> p(+(x, y))
minus(0) -> 0
minus(s(x)) -> p(minus(x))
minus(p(x)) -> s(minus(x))
*(0, y) -> 0
*(s(x), y) -> +(*(x, y), y)
*(p(x), y) -> +(*(x, y), minus(y))
innermost
two new Dependency Pairs are created:
*'(s(x), y) -> *'(x, y)
*'(s(s(x'')), y'') -> *'(s(x''), y'')
*'(s(p(x'')), y'') -> *'(p(x''), y'')
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 24
↳Forward Instantiation Transformation
*'(s(p(x'')), y'') -> *'(p(x''), y'')
*'(s(s(x'')), y'') -> *'(s(x''), y'')
*'(p(x), y) -> *'(x, y)
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
+(p(x), y) -> p(+(x, y))
minus(0) -> 0
minus(s(x)) -> p(minus(x))
minus(p(x)) -> s(minus(x))
*(0, y) -> 0
*(s(x), y) -> +(*(x, y), y)
*(p(x), y) -> +(*(x, y), minus(y))
innermost
three new Dependency Pairs are created:
*'(p(x), y) -> *'(x, y)
*'(p(p(x'')), y'') -> *'(p(x''), y'')
*'(p(s(s(x''''))), y') -> *'(s(s(x'''')), y')
*'(p(s(p(x''''))), y') -> *'(s(p(x'''')), y')
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 24
↳FwdInst
...
→DP Problem 25
↳Forward Instantiation Transformation
*'(p(s(p(x''''))), y') -> *'(s(p(x'''')), y')
*'(s(s(x'')), y'') -> *'(s(x''), y'')
*'(p(s(s(x''''))), y') -> *'(s(s(x'''')), y')
*'(p(p(x'')), y'') -> *'(p(x''), y'')
*'(s(p(x'')), y'') -> *'(p(x''), y'')
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
+(p(x), y) -> p(+(x, y))
minus(0) -> 0
minus(s(x)) -> p(minus(x))
minus(p(x)) -> s(minus(x))
*(0, y) -> 0
*(s(x), y) -> +(*(x, y), y)
*(p(x), y) -> +(*(x, y), minus(y))
innermost
two new Dependency Pairs are created:
*'(s(s(x'')), y'') -> *'(s(x''), y'')
*'(s(s(s(x''''))), y'''') -> *'(s(s(x'''')), y'''')
*'(s(s(p(x''''))), y'''') -> *'(s(p(x'''')), y'''')
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 24
↳FwdInst
...
→DP Problem 26
↳Forward Instantiation Transformation
*'(s(s(p(x''''))), y'''') -> *'(s(p(x'''')), y'''')
*'(s(s(s(x''''))), y'''') -> *'(s(s(x'''')), y'''')
*'(p(s(s(x''''))), y') -> *'(s(s(x'''')), y')
*'(p(p(x'')), y'') -> *'(p(x''), y'')
*'(s(p(x'')), y'') -> *'(p(x''), y'')
*'(p(s(p(x''''))), y') -> *'(s(p(x'''')), y')
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
+(p(x), y) -> p(+(x, y))
minus(0) -> 0
minus(s(x)) -> p(minus(x))
minus(p(x)) -> s(minus(x))
*(0, y) -> 0
*(s(x), y) -> +(*(x, y), y)
*(p(x), y) -> +(*(x, y), minus(y))
innermost
three new Dependency Pairs are created:
*'(s(p(x'')), y'') -> *'(p(x''), y'')
*'(s(p(p(x''''))), y'''') -> *'(p(p(x'''')), y'''')
*'(s(p(s(s(x'''''')))), y'''') -> *'(p(s(s(x''''''))), y'''')
*'(s(p(s(p(x'''''')))), y'''') -> *'(p(s(p(x''''''))), y'''')
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 24
↳FwdInst
...
→DP Problem 27
↳Forward Instantiation Transformation
*'(s(p(s(p(x'''''')))), y'''') -> *'(p(s(p(x''''''))), y'''')
*'(s(p(s(s(x'''''')))), y'''') -> *'(p(s(s(x''''''))), y'''')
*'(p(s(p(x''''))), y') -> *'(s(p(x'''')), y')
*'(s(s(s(x''''))), y'''') -> *'(s(s(x'''')), y'''')
*'(p(s(s(x''''))), y') -> *'(s(s(x'''')), y')
*'(p(p(x'')), y'') -> *'(p(x''), y'')
*'(s(p(p(x''''))), y'''') -> *'(p(p(x'''')), y'''')
*'(s(s(p(x''''))), y'''') -> *'(s(p(x'''')), y'''')
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
+(p(x), y) -> p(+(x, y))
minus(0) -> 0
minus(s(x)) -> p(minus(x))
minus(p(x)) -> s(minus(x))
*(0, y) -> 0
*(s(x), y) -> +(*(x, y), y)
*(p(x), y) -> +(*(x, y), minus(y))
innermost
three new Dependency Pairs are created:
*'(p(p(x'')), y'') -> *'(p(x''), y'')
*'(p(p(p(x''''))), y'''') -> *'(p(p(x'''')), y'''')
*'(p(p(s(s(x'''''')))), y'''') -> *'(p(s(s(x''''''))), y'''')
*'(p(p(s(p(x'''''')))), y'''') -> *'(p(s(p(x''''''))), y'''')
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 24
↳FwdInst
...
→DP Problem 28
↳Forward Instantiation Transformation
*'(p(p(s(p(x'''''')))), y'''') -> *'(p(s(p(x''''''))), y'''')
*'(s(p(s(s(x'''''')))), y'''') -> *'(p(s(s(x''''''))), y'''')
*'(s(s(p(x''''))), y'''') -> *'(s(p(x'''')), y'''')
*'(s(s(s(x''''))), y'''') -> *'(s(s(x'''')), y'''')
*'(p(s(s(x''''))), y') -> *'(s(s(x'''')), y')
*'(p(p(s(s(x'''''')))), y'''') -> *'(p(s(s(x''''''))), y'''')
*'(p(p(p(x''''))), y'''') -> *'(p(p(x'''')), y'''')
*'(s(p(p(x''''))), y'''') -> *'(p(p(x'''')), y'''')
*'(p(s(p(x''''))), y') -> *'(s(p(x'''')), y')
*'(s(p(s(p(x'''''')))), y'''') -> *'(p(s(p(x''''''))), y'''')
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
+(p(x), y) -> p(+(x, y))
minus(0) -> 0
minus(s(x)) -> p(minus(x))
minus(p(x)) -> s(minus(x))
*(0, y) -> 0
*(s(x), y) -> +(*(x, y), y)
*(p(x), y) -> +(*(x, y), minus(y))
innermost
two new Dependency Pairs are created:
*'(p(s(s(x''''))), y') -> *'(s(s(x'''')), y')
*'(p(s(s(s(x'''''')))), y'') -> *'(s(s(s(x''''''))), y'')
*'(p(s(s(p(x'''''')))), y'') -> *'(s(s(p(x''''''))), y'')
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 24
↳FwdInst
...
→DP Problem 29
↳Forward Instantiation Transformation
*'(s(p(s(p(x'''''')))), y'''') -> *'(p(s(p(x''''''))), y'''')
*'(p(s(s(p(x'''''')))), y'') -> *'(s(s(p(x''''''))), y'')
*'(s(p(s(s(x'''''')))), y'''') -> *'(p(s(s(x''''''))), y'''')
*'(s(s(p(x''''))), y'''') -> *'(s(p(x'''')), y'''')
*'(s(s(s(x''''))), y'''') -> *'(s(s(x'''')), y'''')
*'(p(s(s(s(x'''''')))), y'') -> *'(s(s(s(x''''''))), y'')
*'(p(p(s(s(x'''''')))), y'''') -> *'(p(s(s(x''''''))), y'''')
*'(p(p(p(x''''))), y'''') -> *'(p(p(x'''')), y'''')
*'(s(p(p(x''''))), y'''') -> *'(p(p(x'''')), y'''')
*'(p(s(p(x''''))), y') -> *'(s(p(x'''')), y')
*'(p(p(s(p(x'''''')))), y'''') -> *'(p(s(p(x''''''))), y'''')
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
+(p(x), y) -> p(+(x, y))
minus(0) -> 0
minus(s(x)) -> p(minus(x))
minus(p(x)) -> s(minus(x))
*(0, y) -> 0
*(s(x), y) -> +(*(x, y), y)
*(p(x), y) -> +(*(x, y), minus(y))
innermost
three new Dependency Pairs are created:
*'(p(s(p(x''''))), y') -> *'(s(p(x'''')), y')
*'(p(s(p(p(x'''''')))), y'') -> *'(s(p(p(x''''''))), y'')
*'(p(s(p(s(s(x''''''''))))), y'') -> *'(s(p(s(s(x'''''''')))), y'')
*'(p(s(p(s(p(x''''''''))))), y'') -> *'(s(p(s(p(x'''''''')))), y'')
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 24
↳FwdInst
...
→DP Problem 30
↳Polynomial Ordering
*'(p(s(p(s(p(x''''''''))))), y'') -> *'(s(p(s(p(x'''''''')))), y'')
*'(p(s(p(s(s(x''''''''))))), y'') -> *'(s(p(s(s(x'''''''')))), y'')
*'(p(p(s(p(x'''''')))), y'''') -> *'(p(s(p(x''''''))), y'''')
*'(p(s(s(p(x'''''')))), y'') -> *'(s(s(p(x''''''))), y'')
*'(s(p(s(s(x'''''')))), y'''') -> *'(p(s(s(x''''''))), y'''')
*'(s(s(p(x''''))), y'''') -> *'(s(p(x'''')), y'''')
*'(s(s(s(x''''))), y'''') -> *'(s(s(x'''')), y'''')
*'(p(s(s(s(x'''''')))), y'') -> *'(s(s(s(x''''''))), y'')
*'(p(p(s(s(x'''''')))), y'''') -> *'(p(s(s(x''''''))), y'''')
*'(p(p(p(x''''))), y'''') -> *'(p(p(x'''')), y'''')
*'(s(p(p(x''''))), y'''') -> *'(p(p(x'''')), y'''')
*'(p(s(p(p(x'''''')))), y'') -> *'(s(p(p(x''''''))), y'')
*'(s(p(s(p(x'''''')))), y'''') -> *'(p(s(p(x''''''))), y'''')
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
+(p(x), y) -> p(+(x, y))
minus(0) -> 0
minus(s(x)) -> p(minus(x))
minus(p(x)) -> s(minus(x))
*(0, y) -> 0
*(s(x), y) -> +(*(x, y), y)
*(p(x), y) -> +(*(x, y), minus(y))
innermost
*'(p(s(p(s(p(x''''''''))))), y'') -> *'(s(p(s(p(x'''''''')))), y'')
*'(p(s(p(s(s(x''''''''))))), y'') -> *'(s(p(s(s(x'''''''')))), y'')
*'(p(p(s(p(x'''''')))), y'''') -> *'(p(s(p(x''''''))), y'''')
*'(p(s(s(p(x'''''')))), y'') -> *'(s(s(p(x''''''))), y'')
*'(p(s(s(s(x'''''')))), y'') -> *'(s(s(s(x''''''))), y'')
*'(p(p(s(s(x'''''')))), y'''') -> *'(p(s(s(x''''''))), y'''')
*'(p(p(p(x''''))), y'''') -> *'(p(p(x'''')), y'''')
*'(p(s(p(p(x'''''')))), y'') -> *'(s(p(p(x''''''))), y'')
POL(*'(x1, x2)) = 1 + x1 + x2 POL(s(x1)) = x1 POL(p(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 24
↳FwdInst
...
→DP Problem 31
↳Dependency Graph
*'(s(p(s(s(x'''''')))), y'''') -> *'(p(s(s(x''''''))), y'''')
*'(s(s(p(x''''))), y'''') -> *'(s(p(x'''')), y'''')
*'(s(s(s(x''''))), y'''') -> *'(s(s(x'''')), y'''')
*'(s(p(p(x''''))), y'''') -> *'(p(p(x'''')), y'''')
*'(s(p(s(p(x'''''')))), y'''') -> *'(p(s(p(x''''''))), y'''')
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
+(p(x), y) -> p(+(x, y))
minus(0) -> 0
minus(s(x)) -> p(minus(x))
minus(p(x)) -> s(minus(x))
*(0, y) -> 0
*(s(x), y) -> +(*(x, y), y)
*(p(x), y) -> +(*(x, y), minus(y))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 24
↳FwdInst
...
→DP Problem 32
↳Polynomial Ordering
*'(s(s(s(x''''))), y'''') -> *'(s(s(x'''')), y'''')
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
+(p(x), y) -> p(+(x, y))
minus(0) -> 0
minus(s(x)) -> p(minus(x))
minus(p(x)) -> s(minus(x))
*(0, y) -> 0
*(s(x), y) -> +(*(x, y), y)
*(p(x), y) -> +(*(x, y), minus(y))
innermost
*'(s(s(s(x''''))), y'''') -> *'(s(s(x'''')), y'''')
POL(*'(x1, x2)) = 1 + x1 POL(s(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 24
↳FwdInst
...
→DP Problem 33
↳Dependency Graph
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
+(p(x), y) -> p(+(x, y))
minus(0) -> 0
minus(s(x)) -> p(minus(x))
minus(p(x)) -> s(minus(x))
*(0, y) -> 0
*(s(x), y) -> +(*(x, y), y)
*(p(x), y) -> +(*(x, y), minus(y))
innermost