R
↳Dependency Pair Analysis
+'(s(x), y) -> +'(x, y)
-'(s(x), s(y)) -> -'(x, y)
R
↳DPs
→DP Problem 1
↳Forward Instantiation Transformation
→DP Problem 2
↳FwdInst
+'(s(x), y) -> +'(x, y)
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
-(0, y) -> 0
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
innermost
one new Dependency Pair is created:
+'(s(x), y) -> +'(x, y)
+'(s(s(x'')), y'') -> +'(s(x''), y'')
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 3
↳Forward Instantiation Transformation
→DP Problem 2
↳FwdInst
+'(s(s(x'')), y'') -> +'(s(x''), y'')
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
-(0, y) -> 0
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
innermost
one new Dependency Pair is created:
+'(s(s(x'')), y'') -> +'(s(x''), y'')
+'(s(s(s(x''''))), y'''') -> +'(s(s(x'''')), y'''')
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 3
↳FwdInst
...
→DP Problem 4
↳Polynomial Ordering
→DP Problem 2
↳FwdInst
+'(s(s(s(x''''))), y'''') -> +'(s(s(x'''')), y'''')
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
-(0, y) -> 0
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
innermost
+'(s(s(s(x''''))), y'''') -> +'(s(s(x'''')), y'''')
POL(s(x1)) = 1 + x1 POL(+'(x1, x2)) = 1 + x1
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 3
↳FwdInst
...
→DP Problem 5
↳Dependency Graph
→DP Problem 2
↳FwdInst
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
-(0, y) -> 0
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Forward Instantiation Transformation
-'(s(x), s(y)) -> -'(x, y)
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
-(0, y) -> 0
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
innermost
one new Dependency Pair is created:
-'(s(x), s(y)) -> -'(x, y)
-'(s(s(x'')), s(s(y''))) -> -'(s(x''), s(y''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 6
↳Forward Instantiation Transformation
-'(s(s(x'')), s(s(y''))) -> -'(s(x''), s(y''))
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
-(0, y) -> 0
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
innermost
one new Dependency Pair is created:
-'(s(s(x'')), s(s(y''))) -> -'(s(x''), s(y''))
-'(s(s(s(x''''))), s(s(s(y'''')))) -> -'(s(s(x'''')), s(s(y'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 6
↳FwdInst
...
→DP Problem 7
↳Polynomial Ordering
-'(s(s(s(x''''))), s(s(s(y'''')))) -> -'(s(s(x'''')), s(s(y'''')))
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
-(0, y) -> 0
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
innermost
-'(s(s(s(x''''))), s(s(s(y'''')))) -> -'(s(s(x'''')), s(s(y'''')))
POL(-'(x1, x2)) = 1 + x1 POL(s(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 6
↳FwdInst
...
→DP Problem 8
↳Dependency Graph
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
-(0, y) -> 0
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
innermost