Term Rewriting System R:
[x, y, z]
minus(0) -> 0
minus(minus(x)) -> x
+(x, 0) -> x
+(0, y) -> y
+(minus(1), 1) -> 0
+(x, minus(y)) -> minus(+(minus(x), y))
+(x, +(y, z)) -> +(+(x, y), z)
+(minus(+(x, 1)), 1) -> minus(x)
Innermost Termination of R to be shown.
R
↳Dependency Pair Analysis
R contains the following Dependency Pairs:
+'(x, minus(y)) -> MINUS(+(minus(x), y))
+'(x, minus(y)) -> +'(minus(x), y)
+'(x, minus(y)) -> MINUS(x)
+'(x, +(y, z)) -> +'(+(x, y), z)
+'(x, +(y, z)) -> +'(x, y)
+'(minus(+(x, 1)), 1) -> MINUS(x)
Furthermore, R contains one SCC.
R
↳DPs
→DP Problem 1
↳Usable Rules (Innermost)
Dependency Pairs:
+'(x, +(y, z)) -> +'(x, y)
+'(x, minus(y)) -> +'(minus(x), y)
Rules:
minus(0) -> 0
minus(minus(x)) -> x
+(x, 0) -> x
+(0, y) -> y
+(minus(1), 1) -> 0
+(x, minus(y)) -> minus(+(minus(x), y))
+(x, +(y, z)) -> +(+(x, y), z)
+(minus(+(x, 1)), 1) -> minus(x)
Strategy:
innermost
As we are in the innermost case, we can delete all 6 non-usable-rules.
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳Size-Change Principle
Dependency Pairs:
+'(x, +(y, z)) -> +'(x, y)
+'(x, minus(y)) -> +'(minus(x), y)
Rules:
minus(0) -> 0
minus(minus(x)) -> x
Strategy:
innermost
We number the DPs as follows:
- +'(x, +(y, z)) -> +'(x, y)
- +'(x, minus(y)) -> +'(minus(x), y)
and get the following Size-Change Graph(s):
which lead(s) to this/these maximal multigraph(s):
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
+(x1, x2) -> +(x1, x2)
We obtain no new DP problems.
Innermost Termination of R successfully shown.
Duration:
0:00 minutes