R
↳Dependency Pair Analysis
+'(x, minus(y)) -> MINUS(+(minus(x), y))
+'(x, minus(y)) -> +'(minus(x), y)
+'(x, minus(y)) -> MINUS(x)
+'(x, +(y, z)) -> +'(+(x, y), z)
+'(x, +(y, z)) -> +'(x, y)
+'(minus(+(x, 1)), 1) -> MINUS(x)
R
↳DPs
→DP Problem 1
↳Forward Instantiation Transformation
+'(x, +(y, z)) -> +'(x, y)
+'(x, minus(y)) -> +'(minus(x), y)
minus(0) -> 0
minus(minus(x)) -> x
+(x, 0) -> x
+(0, y) -> y
+(minus(1), 1) -> 0
+(x, minus(y)) -> minus(+(minus(x), y))
+(x, +(y, z)) -> +(+(x, y), z)
+(minus(+(x, 1)), 1) -> minus(x)
innermost
two new Dependency Pairs are created:
+'(x, +(y, z)) -> +'(x, y)
+'(x'', +(+(y'', z''), z)) -> +'(x'', +(y'', z''))
+'(x'', +(minus(y''), z)) -> +'(x'', minus(y''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Argument Filtering and Ordering
+'(x'', +(minus(y''), z)) -> +'(x'', minus(y''))
+'(x'', +(+(y'', z''), z)) -> +'(x'', +(y'', z''))
+'(x, minus(y)) -> +'(minus(x), y)
minus(0) -> 0
minus(minus(x)) -> x
+(x, 0) -> x
+(0, y) -> y
+(minus(1), 1) -> 0
+(x, minus(y)) -> minus(+(minus(x), y))
+(x, +(y, z)) -> +(+(x, y), z)
+(minus(+(x, 1)), 1) -> minus(x)
innermost
+'(x'', +(minus(y''), z)) -> +'(x'', minus(y''))
+'(x'', +(+(y'', z''), z)) -> +'(x'', +(y'', z''))
minus(0) -> 0
minus(minus(x)) -> x
+(x, 0) -> x
+(0, y) -> y
+(minus(1), 1) -> 0
+(x, minus(y)) -> minus(+(minus(x), y))
+(x, +(y, z)) -> +(+(x, y), z)
+(minus(+(x, 1)), 1) -> minus(x)
POL(0) = 0 POL(1) = 0 POL(minus(x1)) = x1 POL(+(x1, x2)) = 1 + x1 + x2 POL(+'(x1, x2)) = 1 + x1 + x2
+'(x1, x2) -> +'(x1, x2)
minus(x1) -> minus(x1)
+(x1, x2) -> +(x1, x2)
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳AFS
...
→DP Problem 3
↳Dependency Graph
+'(x, minus(y)) -> +'(minus(x), y)
minus(0) -> 0
minus(minus(x)) -> x
+(x, 0) -> x
+(0, y) -> y
+(minus(1), 1) -> 0
+(x, minus(y)) -> minus(+(minus(x), y))
+(x, +(y, z)) -> +(+(x, y), z)
+(minus(+(x, 1)), 1) -> minus(x)
innermost