Term Rewriting System R:
[y, x]
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
+(s(x), y) -> +(x, s(y))

Innermost Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

+'(s(x), y) -> +'(x, y)
+'(s(x), y) -> +'(x, s(y))

Furthermore, R contains one SCC.


   R
DPs
       →DP Problem 1
Polynomial Ordering


Dependency Pairs:

+'(s(x), y) -> +'(x, s(y))
+'(s(x), y) -> +'(x, y)


Rules:


+(0, y) -> y
+(s(x), y) -> s(+(x, y))
+(s(x), y) -> +(x, s(y))


Strategy:

innermost




The following dependency pairs can be strictly oriented:

+'(s(x), y) -> +'(x, s(y))
+'(s(x), y) -> +'(x, y)


There are no usable rules for innermost w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(s(x1))=  1 + x1  
  POL(+'(x1, x2))=  x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
           →DP Problem 2
Dependency Graph


Dependency Pair:


Rules:


+(0, y) -> y
+(s(x), y) -> s(+(x, y))
+(s(x), y) -> +(x, s(y))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.

Innermost Termination of R successfully shown.
Duration:
0:00 minutes