R
↳Dependency Pair Analysis
+'(s(x), y) -> +'(x, y)
+'(s(x), y) -> +'(x, s(y))
R
↳DPs
→DP Problem 1
↳Forward Instantiation Transformation
+'(s(x), y) -> +'(x, s(y))
+'(s(x), y) -> +'(x, y)
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
+(s(x), y) -> +(x, s(y))
innermost
one new Dependency Pair is created:
+'(s(x), y) -> +'(x, y)
+'(s(s(x'')), y'') -> +'(s(x''), y'')
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Forward Instantiation Transformation
+'(s(s(x'')), y'') -> +'(s(x''), y'')
+'(s(x), y) -> +'(x, s(y))
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
+(s(x), y) -> +(x, s(y))
innermost
two new Dependency Pairs are created:
+'(s(x), y) -> +'(x, s(y))
+'(s(s(x'')), y'') -> +'(s(x''), s(y''))
+'(s(s(s(x''''))), y') -> +'(s(s(x'''')), s(y'))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 3
↳Forward Instantiation Transformation
+'(s(s(s(x''''))), y') -> +'(s(s(x'''')), s(y'))
+'(s(s(x'')), y'') -> +'(s(x''), s(y''))
+'(s(s(x'')), y'') -> +'(s(x''), y'')
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
+(s(x), y) -> +(x, s(y))
innermost
two new Dependency Pairs are created:
+'(s(s(x'')), y'') -> +'(s(x''), y'')
+'(s(s(s(x''''))), y'''') -> +'(s(s(x'''')), y'''')
+'(s(s(s(s(x'''''')))), y'''') -> +'(s(s(s(x''''''))), y'''')
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 4
↳Forward Instantiation Transformation
+'(s(s(s(s(x'''''')))), y'''') -> +'(s(s(s(x''''''))), y'''')
+'(s(s(s(x''''))), y'''') -> +'(s(s(x'''')), y'''')
+'(s(s(x'')), y'') -> +'(s(x''), s(y''))
+'(s(s(s(x''''))), y') -> +'(s(s(x'''')), s(y'))
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
+(s(x), y) -> +(x, s(y))
innermost
four new Dependency Pairs are created:
+'(s(s(x'')), y'') -> +'(s(x''), s(y''))
+'(s(s(s(x''''))), y'''') -> +'(s(s(x'''')), s(y''''))
+'(s(s(s(s(x'''''')))), y'''') -> +'(s(s(s(x''''''))), s(y''''))
+'(s(s(s(s(x'''''')))), y''') -> +'(s(s(s(x''''''))), s(y'''))
+'(s(s(s(s(s(x''''''''))))), y''') -> +'(s(s(s(s(x'''''''')))), s(y'''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 5
↳Forward Instantiation Transformation
+'(s(s(s(s(s(x''''''''))))), y''') -> +'(s(s(s(s(x'''''''')))), s(y'''))
+'(s(s(s(s(x'''''')))), y''') -> +'(s(s(s(x''''''))), s(y'''))
+'(s(s(s(s(x'''''')))), y'''') -> +'(s(s(s(x''''''))), s(y''''))
+'(s(s(s(x''''))), y'''') -> +'(s(s(x'''')), s(y''''))
+'(s(s(s(x''''))), y'''') -> +'(s(s(x'''')), y'''')
+'(s(s(s(x''''))), y') -> +'(s(s(x'''')), s(y'))
+'(s(s(s(s(x'''''')))), y'''') -> +'(s(s(s(x''''''))), y'''')
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
+(s(x), y) -> +(x, s(y))
innermost
four new Dependency Pairs are created:
+'(s(s(s(x''''))), y') -> +'(s(s(x'''')), s(y'))
+'(s(s(s(s(x'''''')))), y''') -> +'(s(s(s(x''''''))), s(y'''))
+'(s(s(s(s(x'''''')))), y'') -> +'(s(s(s(x''''''))), s(y''))
+'(s(s(s(s(s(x''''''''))))), y'') -> +'(s(s(s(s(x'''''''')))), s(y''))
+'(s(s(s(s(s(s(x'''''''''')))))), y'') -> +'(s(s(s(s(s(x''''''''''))))), s(y''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 6
↳Polynomial Ordering
+'(s(s(s(s(s(s(x'''''''''')))))), y'') -> +'(s(s(s(s(s(x''''''''''))))), s(y''))
+'(s(s(s(s(s(x''''''''))))), y'') -> +'(s(s(s(s(x'''''''')))), s(y''))
+'(s(s(s(s(x'''''')))), y'') -> +'(s(s(s(x''''''))), s(y''))
+'(s(s(s(s(x'''''')))), y''') -> +'(s(s(s(x''''''))), s(y'''))
+'(s(s(s(s(x'''''')))), y''') -> +'(s(s(s(x''''''))), s(y'''))
+'(s(s(s(s(x'''''')))), y'''') -> +'(s(s(s(x''''''))), s(y''''))
+'(s(s(s(x''''))), y'''') -> +'(s(s(x'''')), s(y''''))
+'(s(s(s(s(x'''''')))), y'''') -> +'(s(s(s(x''''''))), y'''')
+'(s(s(s(x''''))), y'''') -> +'(s(s(x'''')), y'''')
+'(s(s(s(s(s(x''''''''))))), y''') -> +'(s(s(s(s(x'''''''')))), s(y'''))
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
+(s(x), y) -> +(x, s(y))
innermost
+'(s(s(s(s(s(s(x'''''''''')))))), y'') -> +'(s(s(s(s(s(x''''''''''))))), s(y''))
+'(s(s(s(s(s(x''''''''))))), y'') -> +'(s(s(s(s(x'''''''')))), s(y''))
+'(s(s(s(s(x'''''')))), y'') -> +'(s(s(s(x''''''))), s(y''))
+'(s(s(s(s(x'''''')))), y''') -> +'(s(s(s(x''''''))), s(y'''))
+'(s(s(s(s(x'''''')))), y'''') -> +'(s(s(s(x''''''))), s(y''''))
+'(s(s(s(x''''))), y'''') -> +'(s(s(x'''')), s(y''''))
+'(s(s(s(s(x'''''')))), y'''') -> +'(s(s(s(x''''''))), y'''')
+'(s(s(s(x''''))), y'''') -> +'(s(s(x'''')), y'''')
+'(s(s(s(s(s(x''''''''))))), y''') -> +'(s(s(s(s(x'''''''')))), s(y'''))
POL(s(x1)) = 1 + x1 POL(+'(x1, x2)) = 1 + x1
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 7
↳Dependency Graph
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
+(s(x), y) -> +(x, s(y))
innermost