Term Rewriting System R:
[z, x, y]
+(a, b) -> +(b, a)
+(a, +(b, z)) -> +(b, +(a, z))
+(+(x, y), z) -> +(x, +(y, z))
f(a, y) -> a
f(b, y) -> b
f(+(x, y), z) -> +(f(x, z), f(y, z))

Innermost Termination of R to be shown.

`   R`
`     ↳Dependency Pair Analysis`

R contains the following Dependency Pairs:

+'(a, b) -> +'(b, a)
+'(a, +(b, z)) -> +'(b, +(a, z))
+'(a, +(b, z)) -> +'(a, z)
+'(+(x, y), z) -> +'(x, +(y, z))
+'(+(x, y), z) -> +'(y, z)
F(+(x, y), z) -> +'(f(x, z), f(y, z))
F(+(x, y), z) -> F(x, z)
F(+(x, y), z) -> F(y, z)

Furthermore, R contains three SCCs.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Usable Rules (Innermost)`
`       →DP Problem 2`
`         ↳UsableRules`
`       →DP Problem 3`
`         ↳UsableRules`

Dependency Pair:

+'(a, +(b, z)) -> +'(a, z)

Rules:

+(a, b) -> +(b, a)
+(a, +(b, z)) -> +(b, +(a, z))
+(+(x, y), z) -> +(x, +(y, z))
f(a, y) -> a
f(b, y) -> b
f(+(x, y), z) -> +(f(x, z), f(y, z))

Strategy:

innermost

As we are in the innermost case, we can delete all 6 non-usable-rules.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳UsableRules`
`           →DP Problem 4`
`             ↳A-Transformation`
`       →DP Problem 2`
`         ↳UsableRules`
`       →DP Problem 3`
`         ↳UsableRules`

Dependency Pair:

+'(a, +(b, z)) -> +'(a, z)

Rule:

none

Strategy:

innermost

We have an applicative DP problem with proper arity. Thus we can use the A-Transformation to obtain one new DP problem which consists of the A-transformed TRSs.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳UsableRules`
`           →DP Problem 4`
`             ↳ATrans`
`             ...`
`               →DP Problem 5`
`                 ↳Size-Change Principle`
`       →DP Problem 2`
`         ↳UsableRules`
`       →DP Problem 3`
`         ↳UsableRules`

Dependency Pair:

A(b(z)) -> A(z)

Rule:

none

Strategy:

innermost

We number the DPs as follows:
1. A(b(z)) -> A(z)
and get the following Size-Change Graph(s):
{1} , {1}
1>1

which lead(s) to this/these maximal multigraph(s):
{1} , {1}
1>1

DP: empty set
Oriented Rules: none

We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial

with Argument Filtering System:
b(x1) -> b(x1)

We obtain no new DP problems.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳UsableRules`
`       →DP Problem 2`
`         ↳Usable Rules (Innermost)`
`       →DP Problem 3`
`         ↳UsableRules`

Dependency Pair:

+'(+(x, y), z) -> +'(y, z)

Rules:

+(a, b) -> +(b, a)
+(a, +(b, z)) -> +(b, +(a, z))
+(+(x, y), z) -> +(x, +(y, z))
f(a, y) -> a
f(b, y) -> b
f(+(x, y), z) -> +(f(x, z), f(y, z))

Strategy:

innermost

As we are in the innermost case, we can delete all 6 non-usable-rules.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳UsableRules`
`       →DP Problem 2`
`         ↳UsableRules`
`           →DP Problem 6`
`             ↳Size-Change Principle`
`       →DP Problem 3`
`         ↳UsableRules`

Dependency Pair:

+'(+(x, y), z) -> +'(y, z)

Rule:

none

Strategy:

innermost

We number the DPs as follows:
1. +'(+(x, y), z) -> +'(y, z)
and get the following Size-Change Graph(s):
{1} , {1}
1>1
2=2

which lead(s) to this/these maximal multigraph(s):
{1} , {1}
1>1
2=2

DP: empty set
Oriented Rules: none

We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial

with Argument Filtering System:
+(x1, x2) -> +(x1, x2)

We obtain no new DP problems.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳UsableRules`
`       →DP Problem 2`
`         ↳UsableRules`
`       →DP Problem 3`
`         ↳Usable Rules (Innermost)`

Dependency Pair:

F(+(x, y), z) -> F(y, z)

Rules:

+(a, b) -> +(b, a)
+(a, +(b, z)) -> +(b, +(a, z))
+(+(x, y), z) -> +(x, +(y, z))
f(a, y) -> a
f(b, y) -> b
f(+(x, y), z) -> +(f(x, z), f(y, z))

Strategy:

innermost

As we are in the innermost case, we can delete all 6 non-usable-rules.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳UsableRules`
`       →DP Problem 2`
`         ↳UsableRules`
`       →DP Problem 3`
`         ↳UsableRules`
`           →DP Problem 7`
`             ↳Size-Change Principle`

Dependency Pair:

F(+(x, y), z) -> F(y, z)

Rule:

none

Strategy:

innermost

We number the DPs as follows:
1. F(+(x, y), z) -> F(y, z)
and get the following Size-Change Graph(s):
{1} , {1}
1>1
2=2

which lead(s) to this/these maximal multigraph(s):
{1} , {1}
1>1
2=2

DP: empty set
Oriented Rules: none

We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial

with Argument Filtering System:
+(x1, x2) -> +(x1, x2)

We obtain no new DP problems.

Innermost Termination of R successfully shown.
Duration:
0:00 minutes