R
↳Dependency Pair Analysis
+'(x, +(y, z)) -> +'(+(x, y), z)
+'(x, +(y, z)) -> +'(x, y)
+'(*(x, y), +(x, z)) -> +'(y, z)
+'(*(x, y), +(*(x, z), u)) -> +'(*(x, +(y, z)), u)
+'(*(x, y), +(*(x, z), u)) -> +'(y, z)
R
↳DPs
→DP Problem 1
↳Polynomial Ordering
+'(*(x, y), +(*(x, z), u)) -> +'(y, z)
+'(x, +(y, z)) -> +'(x, y)
+(x, +(y, z)) -> +(+(x, y), z)
+(*(x, y), +(x, z)) -> *(x, +(y, z))
+(*(x, y), +(*(x, z), u)) -> +(*(x, +(y, z)), u)
innermost
+'(*(x, y), +(*(x, z), u)) -> +'(y, z)
POL(*(x1, x2)) = 1 + x2 POL(+(x1, x2)) = 0 POL(+'(x1, x2)) = x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polynomial Ordering
+'(x, +(y, z)) -> +'(x, y)
+(x, +(y, z)) -> +(+(x, y), z)
+(*(x, y), +(x, z)) -> *(x, +(y, z))
+(*(x, y), +(*(x, z), u)) -> +(*(x, +(y, z)), u)
innermost
+'(x, +(y, z)) -> +'(x, y)
POL(+(x1, x2)) = 1 + x1 POL(+'(x1, x2)) = x2
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
...
→DP Problem 3
↳Dependency Graph
+(x, +(y, z)) -> +(+(x, y), z)
+(*(x, y), +(x, z)) -> *(x, +(y, z))
+(*(x, y), +(*(x, z), u)) -> +(*(x, +(y, z)), u)
innermost