R
↳Dependency Pair Analysis
+'(x, +(y, z)) -> +'(+(x, y), z)
+'(x, +(y, z)) -> +'(x, y)
+'(*(x, y), +(x, z)) -> +'(y, z)
+'(*(x, y), +(*(x, z), u)) -> +'(*(x, +(y, z)), u)
+'(*(x, y), +(*(x, z), u)) -> +'(y, z)
R
↳DPs
→DP Problem 1
↳Forward Instantiation Transformation
+'(*(x, y), +(*(x, z), u)) -> +'(y, z)
+'(x, +(y, z)) -> +'(x, y)
+(x, +(y, z)) -> +(+(x, y), z)
+(*(x, y), +(x, z)) -> *(x, +(y, z))
+(*(x, y), +(*(x, z), u)) -> +(*(x, +(y, z)), u)
innermost
two new Dependency Pairs are created:
+'(x, +(y, z)) -> +'(x, y)
+'(x'', +(+(y'', z''), z)) -> +'(x'', +(y'', z''))
+'(*(x'0, y''), +(+(*(x''', z''), u''), z)) -> +'(*(x'0, y''), +(*(x''', z''), u''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Forward Instantiation Transformation
+'(*(x'0, y''), +(+(*(x''', z''), u''), z)) -> +'(*(x'0, y''), +(*(x''', z''), u''))
+'(x'', +(+(y'', z''), z)) -> +'(x'', +(y'', z''))
+'(*(x, y), +(*(x, z), u)) -> +'(y, z)
+(x, +(y, z)) -> +(+(x, y), z)
+(*(x, y), +(x, z)) -> *(x, +(y, z))
+(*(x, y), +(*(x, z), u)) -> +(*(x, +(y, z)), u)
innermost
three new Dependency Pairs are created:
+'(*(x, y), +(*(x, z), u)) -> +'(y, z)
+'(*(x, *(x'0, y'')), +(*(x, +(*(x''', z''), u'')), u)) -> +'(*(x'0, y''), +(*(x''', z''), u''))
+'(*(x, y'), +(*(x, +(+(y'''', z''''), z'')), u)) -> +'(y', +(+(y'''', z''''), z''))
+'(*(x, *(x'0'', y'''')), +(*(x, +(+(*(x''''', z''''), u''''), z'')), u)) -> +'(*(x'0'', y''''), +(+(*(x''''', z''''), u''''), z''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 3
↳Argument Filtering and Ordering
+'(*(x, *(x'0'', y'''')), +(*(x, +(+(*(x''''', z''''), u''''), z'')), u)) -> +'(*(x'0'', y''''), +(+(*(x''''', z''''), u''''), z''))
+'(x'', +(+(y'', z''), z)) -> +'(x'', +(y'', z''))
+'(*(x, y'), +(*(x, +(+(y'''', z''''), z'')), u)) -> +'(y', +(+(y'''', z''''), z''))
+'(*(x, *(x'0, y'')), +(*(x, +(*(x''', z''), u'')), u)) -> +'(*(x'0, y''), +(*(x''', z''), u''))
+'(*(x'0, y''), +(+(*(x''', z''), u''), z)) -> +'(*(x'0, y''), +(*(x''', z''), u''))
+(x, +(y, z)) -> +(+(x, y), z)
+(*(x, y), +(x, z)) -> *(x, +(y, z))
+(*(x, y), +(*(x, z), u)) -> +(*(x, +(y, z)), u)
innermost
+'(*(x, *(x'0'', y'''')), +(*(x, +(+(*(x''''', z''''), u''''), z'')), u)) -> +'(*(x'0'', y''''), +(+(*(x''''', z''''), u''''), z''))
+'(*(x, y'), +(*(x, +(+(y'''', z''''), z'')), u)) -> +'(y', +(+(y'''', z''''), z''))
+'(*(x, *(x'0, y'')), +(*(x, +(*(x''', z''), u'')), u)) -> +'(*(x'0, y''), +(*(x''', z''), u''))
+(x, +(y, z)) -> +(+(x, y), z)
+(*(x, y), +(x, z)) -> *(x, +(y, z))
+(*(x, y), +(*(x, z), u)) -> +(*(x, +(y, z)), u)
trivial
+'(x1, x2) -> +'(x1, x2)
+(x1, x2) -> x1
*(x1, x2) -> *(x1, x2)
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 4
↳Dependency Graph
+'(x'', +(+(y'', z''), z)) -> +'(x'', +(y'', z''))
+'(*(x'0, y''), +(+(*(x''', z''), u''), z)) -> +'(*(x'0, y''), +(*(x''', z''), u''))
+(x, +(y, z)) -> +(+(x, y), z)
+(*(x, y), +(x, z)) -> *(x, +(y, z))
+(*(x, y), +(*(x, z), u)) -> +(*(x, +(y, z)), u)
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 5
↳Remaining Obligation(s)
+'(x'', +(+(y'', z''), z)) -> +'(x'', +(y'', z''))
+(x, +(y, z)) -> +(+(x, y), z)
+(*(x, y), +(x, z)) -> *(x, +(y, z))
+(*(x, y), +(*(x, z), u)) -> +(*(x, +(y, z)), u)
innermost