R
↳Dependency Pair Analysis
+'(x, +(y, z)) -> +'(+(x, y), z)
+'(x, +(y, z)) -> +'(x, y)
+'(+(x, *(y, z)), *(y, u)) -> +'(x, *(y, +(z, u)))
+'(+(x, *(y, z)), *(y, u)) -> *'(y, +(z, u))
+'(+(x, *(y, z)), *(y, u)) -> +'(z, u)
*'(x, +(y, z)) -> +'(*(x, y), *(x, z))
*'(x, +(y, z)) -> *'(x, y)
*'(x, +(y, z)) -> *'(x, z)
R
↳DPs
→DP Problem 1
↳Narrowing Transformation
*'(x, +(y, z)) -> *'(x, y)
*'(x, +(y, z)) -> +'(*(x, y), *(x, z))
+'(+(x, *(y, z)), *(y, u)) -> *'(y, +(z, u))
+'(x, +(y, z)) -> +'(x, y)
+'(+(x, *(y, z)), *(y, u)) -> +'(x, *(y, +(z, u)))
+'(x, +(y, z)) -> +'(+(x, y), z)
+(x, +(y, z)) -> +(+(x, y), z)
+(+(x, *(y, z)), *(y, u)) -> +(x, *(y, +(z, u)))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
innermost
one new Dependency Pair is created:
+'(+(x, *(y, z)), *(y, u)) -> +'(x, *(y, +(z, u)))
+'(+(x, *(y'', z'')), *(y'', u')) -> +'(x, +(*(y'', z''), *(y'', u')))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Narrowing Transformation
+'(x, +(y, z)) -> +'(x, y)
+'(+(x, *(y'', z'')), *(y'', u')) -> +'(x, +(*(y'', z''), *(y'', u')))
+'(+(x, *(y, z)), *(y, u)) -> *'(y, +(z, u))
+'(x, +(y, z)) -> +'(+(x, y), z)
*'(x, +(y, z)) -> +'(*(x, y), *(x, z))
*'(x, +(y, z)) -> *'(x, y)
+(x, +(y, z)) -> +(+(x, y), z)
+(+(x, *(y, z)), *(y, u)) -> +(x, *(y, +(z, u)))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
innermost
one new Dependency Pair is created:
*'(x, +(y, z)) -> +'(*(x, y), *(x, z))
*'(x'', +(+(y'', z''), z)) -> +'(+(*(x'', y''), *(x'', z'')), *(x'', z))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Nar
...
→DP Problem 3
↳Forward Instantiation Transformation
+'(+(x, *(y'', z'')), *(y'', u')) -> +'(x, +(*(y'', z''), *(y'', u')))
*'(x'', +(+(y'', z''), z)) -> +'(+(*(x'', y''), *(x'', z'')), *(x'', z))
*'(x, +(y, z)) -> *'(x, y)
+'(+(x, *(y, z)), *(y, u)) -> *'(y, +(z, u))
+'(x, +(y, z)) -> +'(+(x, y), z)
+'(x, +(y, z)) -> +'(x, y)
+(x, +(y, z)) -> +(+(x, y), z)
+(+(x, *(y, z)), *(y, u)) -> +(x, *(y, +(z, u)))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
innermost
two new Dependency Pairs are created:
+'(x, +(y, z)) -> +'(+(x, y), z)
+'(x', +(y0, *(y'', u''))) -> +'(+(x', y0), *(y'', u''))
+'(x', +(y', *(y'''', u'''))) -> +'(+(x', y'), *(y'''', u'''))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Nar
...
→DP Problem 4
↳Forward Instantiation Transformation
+'(x', +(y', *(y'''', u'''))) -> +'(+(x', y'), *(y'''', u'''))
+'(x', +(y0, *(y'', u''))) -> +'(+(x', y0), *(y'', u''))
*'(x'', +(+(y'', z''), z)) -> +'(+(*(x'', y''), *(x'', z'')), *(x'', z))
*'(x, +(y, z)) -> *'(x, y)
+'(+(x, *(y, z)), *(y, u)) -> *'(y, +(z, u))
+'(x, +(y, z)) -> +'(x, y)
+'(+(x, *(y'', z'')), *(y'', u')) -> +'(x, +(*(y'', z''), *(y'', u')))
+(x, +(y, z)) -> +(+(x, y), z)
+(+(x, *(y, z)), *(y, u)) -> +(x, *(y, +(z, u)))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
innermost
five new Dependency Pairs are created:
+'(x, +(y, z)) -> +'(x, y)
+'(x'', +(+(y'', z''), z)) -> +'(x'', +(y'', z''))
+'(+(x'', *(y''', z'')), +(*(y'''', u''), z)) -> +'(+(x'', *(y''', z'')), *(y'''', u''))
+'(+(x'', *(y''''', z'''')), +(*(y'''''', u'''), z)) -> +'(+(x'', *(y''''', z'''')), *(y'''''', u'''))
+'(x', +(+(y0'', *(y'''', u'''')), z)) -> +'(x', +(y0'', *(y'''', u'''')))
+'(x', +(+(y''', *(y'''''', u''''')), z)) -> +'(x', +(y''', *(y'''''', u''''')))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Nar
...
→DP Problem 5
↳Forward Instantiation Transformation
+'(x', +(+(y''', *(y'''''', u''''')), z)) -> +'(x', +(y''', *(y'''''', u''''')))
+'(x', +(+(y0'', *(y'''', u'''')), z)) -> +'(x', +(y0'', *(y'''', u'''')))
+'(+(x'', *(y''''', z'''')), +(*(y'''''', u'''), z)) -> +'(+(x'', *(y''''', z'''')), *(y'''''', u'''))
+'(+(x'', *(y''', z'')), +(*(y'''', u''), z)) -> +'(+(x'', *(y''', z'')), *(y'''', u''))
+'(x'', +(+(y'', z''), z)) -> +'(x'', +(y'', z''))
+'(x', +(y0, *(y'', u''))) -> +'(+(x', y0), *(y'', u''))
+'(+(x, *(y'', z'')), *(y'', u')) -> +'(x, +(*(y'', z''), *(y'', u')))
*'(x'', +(+(y'', z''), z)) -> +'(+(*(x'', y''), *(x'', z'')), *(x'', z))
*'(x, +(y, z)) -> *'(x, y)
+'(+(x, *(y, z)), *(y, u)) -> *'(y, +(z, u))
+'(x', +(y', *(y'''', u'''))) -> +'(+(x', y'), *(y'''', u'''))
+(x, +(y, z)) -> +(+(x, y), z)
+(+(x, *(y, z)), *(y, u)) -> +(x, *(y, +(z, u)))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
innermost
two new Dependency Pairs are created:
*'(x, +(y, z)) -> *'(x, y)
*'(x'', +(+(y'', z''), z)) -> *'(x'', +(y'', z''))
*'(x', +(+(+(y'''', z''''), z''), z)) -> *'(x', +(+(y'''', z''''), z''))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Nar
...
→DP Problem 6
↳Narrowing Transformation
*'(x', +(+(+(y'''', z''''), z''), z)) -> *'(x', +(+(y'''', z''''), z''))
*'(x'', +(+(y'', z''), z)) -> *'(x'', +(y'', z''))
+'(x', +(+(y0'', *(y'''', u'''')), z)) -> +'(x', +(y0'', *(y'''', u'''')))
+'(+(x'', *(y''''', z'''')), +(*(y'''''', u'''), z)) -> +'(+(x'', *(y''''', z'''')), *(y'''''', u'''))
+'(+(x'', *(y''', z'')), +(*(y'''', u''), z)) -> +'(+(x'', *(y''', z'')), *(y'''', u''))
+'(x'', +(+(y'', z''), z)) -> +'(x'', +(y'', z''))
+'(x', +(y', *(y'''', u'''))) -> +'(+(x', y'), *(y'''', u'''))
+'(+(x, *(y'', z'')), *(y'', u')) -> +'(x, +(*(y'', z''), *(y'', u')))
*'(x'', +(+(y'', z''), z)) -> +'(+(*(x'', y''), *(x'', z'')), *(x'', z))
+'(+(x, *(y, z)), *(y, u)) -> *'(y, +(z, u))
+'(x', +(y0, *(y'', u''))) -> +'(+(x', y0), *(y'', u''))
+'(x', +(+(y''', *(y'''''', u''''')), z)) -> +'(x', +(y''', *(y'''''', u''''')))
+(x, +(y, z)) -> +(+(x, y), z)
+(+(x, *(y, z)), *(y, u)) -> +(x, *(y, +(z, u)))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
innermost
no new Dependency Pairs are created.
+'(+(x, *(y, z)), *(y, u)) -> *'(y, +(z, u))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Nar
...
→DP Problem 8
↳Remaining Obligation(s)
+'(x', +(+(y''', *(y'''''', u''''')), z)) -> +'(x', +(y''', *(y'''''', u''''')))
+'(x', +(+(y0'', *(y'''', u'''')), z)) -> +'(x', +(y0'', *(y'''', u'''')))
+'(+(x'', *(y''''', z'''')), +(*(y'''''', u'''), z)) -> +'(+(x'', *(y''''', z'''')), *(y'''''', u'''))
+'(+(x'', *(y''', z'')), +(*(y'''', u''), z)) -> +'(+(x'', *(y''', z'')), *(y'''', u''))
+'(x'', +(+(y'', z''), z)) -> +'(x'', +(y'', z''))
+'(x', +(y', *(y'''', u'''))) -> +'(+(x', y'), *(y'''', u'''))
+'(x', +(y0, *(y'', u''))) -> +'(+(x', y0), *(y'', u''))
+'(+(x, *(y'', z'')), *(y'', u')) -> +'(x, +(*(y'', z''), *(y'', u')))
+(x, +(y, z)) -> +(+(x, y), z)
+(+(x, *(y, z)), *(y, u)) -> +(x, *(y, +(z, u)))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
innermost
*'(x'', +(+(y'', z''), z)) -> *'(x'', +(y'', z''))
*'(x', +(+(+(y'''', z''''), z''), z)) -> *'(x', +(+(y'''', z''''), z''))
+(x, +(y, z)) -> +(+(x, y), z)
+(+(x, *(y, z)), *(y, u)) -> +(x, *(y, +(z, u)))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
innermost
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Nar
...
→DP Problem 8
↳Remaining Obligation(s)
+'(x', +(+(y''', *(y'''''', u''''')), z)) -> +'(x', +(y''', *(y'''''', u''''')))
+'(x', +(+(y0'', *(y'''', u'''')), z)) -> +'(x', +(y0'', *(y'''', u'''')))
+'(+(x'', *(y''''', z'''')), +(*(y'''''', u'''), z)) -> +'(+(x'', *(y''''', z'''')), *(y'''''', u'''))
+'(+(x'', *(y''', z'')), +(*(y'''', u''), z)) -> +'(+(x'', *(y''', z'')), *(y'''', u''))
+'(x'', +(+(y'', z''), z)) -> +'(x'', +(y'', z''))
+'(x', +(y', *(y'''', u'''))) -> +'(+(x', y'), *(y'''', u'''))
+'(x', +(y0, *(y'', u''))) -> +'(+(x', y0), *(y'', u''))
+'(+(x, *(y'', z'')), *(y'', u')) -> +'(x, +(*(y'', z''), *(y'', u')))
+(x, +(y, z)) -> +(+(x, y), z)
+(+(x, *(y, z)), *(y, u)) -> +(x, *(y, +(z, u)))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
innermost
*'(x'', +(+(y'', z''), z)) -> *'(x'', +(y'', z''))
*'(x', +(+(+(y'''', z''''), z''), z)) -> *'(x', +(+(y'''', z''''), z''))
+(x, +(y, z)) -> +(+(x, y), z)
+(+(x, *(y, z)), *(y, u)) -> +(x, *(y, +(z, u)))
*(x, +(y, z)) -> +(*(x, y), *(x, z))
innermost