Term Rewriting System R:
[x, y]
minus(minus(x)) -> x
minus(h(x)) -> h(minus(x))
minus(f(x, y)) -> f(minus(y), minus(x))
Innermost Termination of R to be shown.
R
↳Dependency Pair Analysis
R contains the following Dependency Pairs:
MINUS(h(x)) -> MINUS(x)
MINUS(f(x, y)) -> MINUS(y)
MINUS(f(x, y)) -> MINUS(x)
Furthermore, R contains one SCC.
R
↳DPs
→DP Problem 1
↳Usable Rules (Innermost)
Dependency Pairs:
MINUS(f(x, y)) -> MINUS(x)
MINUS(f(x, y)) -> MINUS(y)
MINUS(h(x)) -> MINUS(x)
Rules:
minus(minus(x)) -> x
minus(h(x)) -> h(minus(x))
minus(f(x, y)) -> f(minus(y), minus(x))
Strategy:
innermost
As we are in the innermost case, we can delete all 3 non-usable-rules.
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳Size-Change Principle
Dependency Pairs:
MINUS(f(x, y)) -> MINUS(x)
MINUS(f(x, y)) -> MINUS(y)
MINUS(h(x)) -> MINUS(x)
Rule:
none
Strategy:
innermost
We number the DPs as follows:
- MINUS(f(x, y)) -> MINUS(x)
- MINUS(f(x, y)) -> MINUS(y)
- MINUS(h(x)) -> MINUS(x)
and get the following Size-Change Graph(s):
which lead(s) to this/these maximal multigraph(s):
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
h(x1) -> h(x1)
f(x1, x2) -> f(x1, x2)
We obtain no new DP problems.
Innermost Termination of R successfully shown.
Duration:
0:00 minutes