Term Rewriting System R:
[x, y]
minus(minus(x)) -> x
minus(h(x)) -> h(minus(x))
minus(f(x, y)) -> f(minus(y), minus(x))

Innermost Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

MINUS(h(x)) -> MINUS(x)
MINUS(f(x, y)) -> MINUS(y)
MINUS(f(x, y)) -> MINUS(x)

Furthermore, R contains one SCC.


   R
DPs
       →DP Problem 1
Polynomial Ordering


Dependency Pairs:

MINUS(f(x, y)) -> MINUS(x)
MINUS(f(x, y)) -> MINUS(y)
MINUS(h(x)) -> MINUS(x)


Rules:


minus(minus(x)) -> x
minus(h(x)) -> h(minus(x))
minus(f(x, y)) -> f(minus(y), minus(x))


Strategy:

innermost




The following dependency pairs can be strictly oriented:

MINUS(f(x, y)) -> MINUS(x)
MINUS(f(x, y)) -> MINUS(y)


There are no usable rules for innermost that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(MINUS(x1))=  x1  
  POL(h(x1))=  x1  
  POL(f(x1, x2))=  1 + x1 + x2  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
           →DP Problem 2
Polynomial Ordering


Dependency Pair:

MINUS(h(x)) -> MINUS(x)


Rules:


minus(minus(x)) -> x
minus(h(x)) -> h(minus(x))
minus(f(x, y)) -> f(minus(y), minus(x))


Strategy:

innermost




The following dependency pair can be strictly oriented:

MINUS(h(x)) -> MINUS(x)


There are no usable rules for innermost that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(MINUS(x1))=  x1  
  POL(h(x1))=  1 + x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
           →DP Problem 2
Polo
             ...
               →DP Problem 3
Dependency Graph


Dependency Pair:


Rules:


minus(minus(x)) -> x
minus(h(x)) -> h(minus(x))
minus(f(x, y)) -> f(minus(y), minus(x))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.

Innermost Termination of R successfully shown.
Duration:
0:00 minutes