Term Rewriting System R:
[x, y, z]
i(0) -> 0
i(i(x)) -> x
i(+(x, y)) -> +(i(x), i(y))
+(0, y) -> y
+(x, 0) -> x
+(i(x), x) -> 0
+(x, i(x)) -> 0
+(x, +(y, z)) -> +(+(x, y), z)
+(+(x, i(y)), y) -> x
+(+(x, y), i(y)) -> x

Innermost Termination of R to be shown.

`   R`
`     ↳Dependency Pair Analysis`

R contains the following Dependency Pairs:

I(+(x, y)) -> +'(i(x), i(y))
I(+(x, y)) -> I(x)
I(+(x, y)) -> I(y)
+'(x, +(y, z)) -> +'(+(x, y), z)
+'(x, +(y, z)) -> +'(x, y)

Furthermore, R contains two SCCs.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Argument Filtering and Ordering`
`       →DP Problem 2`
`         ↳AFS`

Dependency Pair:

+'(x, +(y, z)) -> +'(x, y)

Rules:

i(0) -> 0
i(i(x)) -> x
i(+(x, y)) -> +(i(x), i(y))
+(0, y) -> y
+(x, 0) -> x
+(i(x), x) -> 0
+(x, i(x)) -> 0
+(x, +(y, z)) -> +(+(x, y), z)
+(+(x, i(y)), y) -> x
+(+(x, y), i(y)) -> x

Strategy:

innermost

The following dependency pair can be strictly oriented:

+'(x, +(y, z)) -> +'(x, y)

There are no usable rules for innermost w.r.t. to the AFS that need to be oriented.
Used ordering: Polynomial ordering with Polynomial interpretation:
 POL(+(x1, x2)) =  1 + x1 + x2 POL(+'(x1, x2)) =  x1 + x2

resulting in one new DP problem.
Used Argument Filtering System:
+'(x1, x2) -> +'(x1, x2)
+(x1, x2) -> +(x1, x2)

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳AFS`
`           →DP Problem 3`
`             ↳Dependency Graph`
`       →DP Problem 2`
`         ↳AFS`

Dependency Pair:

Rules:

i(0) -> 0
i(i(x)) -> x
i(+(x, y)) -> +(i(x), i(y))
+(0, y) -> y
+(x, 0) -> x
+(i(x), x) -> 0
+(x, i(x)) -> 0
+(x, +(y, z)) -> +(+(x, y), z)
+(+(x, i(y)), y) -> x
+(+(x, y), i(y)) -> x

Strategy:

innermost

Using the Dependency Graph resulted in no new DP problems.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳AFS`
`       →DP Problem 2`
`         ↳Argument Filtering and Ordering`

Dependency Pair:

I(+(x, y)) -> I(x)

Rules:

i(0) -> 0
i(i(x)) -> x
i(+(x, y)) -> +(i(x), i(y))
+(0, y) -> y
+(x, 0) -> x
+(i(x), x) -> 0
+(x, i(x)) -> 0
+(x, +(y, z)) -> +(+(x, y), z)
+(+(x, i(y)), y) -> x
+(+(x, y), i(y)) -> x

Strategy:

innermost

The following dependency pair can be strictly oriented:

I(+(x, y)) -> I(x)

There are no usable rules for innermost w.r.t. to the AFS that need to be oriented.
Used ordering: Polynomial ordering with Polynomial interpretation:
 POL(I(x1)) =  x1 POL(+(x1, x2)) =  1 + x1 + x2

resulting in one new DP problem.
Used Argument Filtering System:
I(x1) -> I(x1)
+(x1, x2) -> +(x1, x2)

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳AFS`
`       →DP Problem 2`
`         ↳AFS`
`           →DP Problem 4`
`             ↳Dependency Graph`

Dependency Pair:

Rules:

i(0) -> 0
i(i(x)) -> x
i(+(x, y)) -> +(i(x), i(y))
+(0, y) -> y
+(x, 0) -> x
+(i(x), x) -> 0
+(x, i(x)) -> 0
+(x, +(y, z)) -> +(+(x, y), z)
+(+(x, i(y)), y) -> x
+(+(x, y), i(y)) -> x

Strategy:

innermost

Using the Dependency Graph resulted in no new DP problems.

Innermost Termination of R successfully shown.
Duration:
0:00 minutes