Term Rewriting System R:
[x, y, z]
i(0) -> 0
i(i(x)) -> x
i(+(x, y)) -> +(i(x), i(y))
+(0, y) -> y
+(x, 0) -> x
+(i(x), x) -> 0
+(x, i(x)) -> 0
+(x, +(y, z)) -> +(+(x, y), z)
+(+(x, i(y)), y) -> x
+(+(x, y), i(y)) -> x

Innermost Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

I(+(x, y)) -> +'(i(x), i(y))
I(+(x, y)) -> I(x)
I(+(x, y)) -> I(y)
+'(x, +(y, z)) -> +'(+(x, y), z)
+'(x, +(y, z)) -> +'(x, y)

Furthermore, R contains two SCCs.


   R
DPs
       →DP Problem 1
Argument Filtering and Ordering
       →DP Problem 2
AFS


Dependency Pair:

+'(x, +(y, z)) -> +'(x, y)


Rules:


i(0) -> 0
i(i(x)) -> x
i(+(x, y)) -> +(i(x), i(y))
+(0, y) -> y
+(x, 0) -> x
+(i(x), x) -> 0
+(x, i(x)) -> 0
+(x, +(y, z)) -> +(+(x, y), z)
+(+(x, i(y)), y) -> x
+(+(x, y), i(y)) -> x


Strategy:

innermost




The following dependency pair can be strictly oriented:

+'(x, +(y, z)) -> +'(x, y)


There are no usable rules for innermost w.r.t. to the AFS that need to be oriented.
Used ordering: Lexicographic Path Order with Non-Strict Precedence with Quasi Precedence:
trivial

resulting in one new DP problem.
Used Argument Filtering System:
+'(x1, x2) -> +'(x1, x2)
+(x1, x2) -> +(x1, x2)


   R
DPs
       →DP Problem 1
AFS
           →DP Problem 3
Dependency Graph
       →DP Problem 2
AFS


Dependency Pair:


Rules:


i(0) -> 0
i(i(x)) -> x
i(+(x, y)) -> +(i(x), i(y))
+(0, y) -> y
+(x, 0) -> x
+(i(x), x) -> 0
+(x, i(x)) -> 0
+(x, +(y, z)) -> +(+(x, y), z)
+(+(x, i(y)), y) -> x
+(+(x, y), i(y)) -> x


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
Argument Filtering and Ordering


Dependency Pair:

I(+(x, y)) -> I(x)


Rules:


i(0) -> 0
i(i(x)) -> x
i(+(x, y)) -> +(i(x), i(y))
+(0, y) -> y
+(x, 0) -> x
+(i(x), x) -> 0
+(x, i(x)) -> 0
+(x, +(y, z)) -> +(+(x, y), z)
+(+(x, i(y)), y) -> x
+(+(x, y), i(y)) -> x


Strategy:

innermost




The following dependency pair can be strictly oriented:

I(+(x, y)) -> I(x)


There are no usable rules for innermost w.r.t. to the AFS that need to be oriented.
Used ordering: Lexicographic Path Order with Non-Strict Precedence with Quasi Precedence:
trivial

resulting in one new DP problem.
Used Argument Filtering System:
I(x1) -> I(x1)
+(x1, x2) -> +(x1, x2)


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
           →DP Problem 4
Dependency Graph


Dependency Pair:


Rules:


i(0) -> 0
i(i(x)) -> x
i(+(x, y)) -> +(i(x), i(y))
+(0, y) -> y
+(x, 0) -> x
+(i(x), x) -> 0
+(x, i(x)) -> 0
+(x, +(y, z)) -> +(+(x, y), z)
+(+(x, i(y)), y) -> x
+(+(x, y), i(y)) -> x


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.

Innermost Termination of R successfully shown.
Duration:
0:00 minutes