Term Rewriting System R:
[X, Y, L]
rev1(0, nil) -> 0
rev1(s(X), nil) -> s(X)
rev1(X, cons(Y, L)) -> rev1(Y, L)
rev(nil) -> nil
rev(cons(X, L)) -> cons(rev1(X, L), rev2(X, L))
rev2(X, nil) -> nil
rev2(X, cons(Y, L)) -> rev(cons(X, rev(rev2(Y, L))))

Innermost Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

REV1(X, cons(Y, L)) -> REV1(Y, L)
REV(cons(X, L)) -> REV1(X, L)
REV(cons(X, L)) -> REV2(X, L)
REV2(X, cons(Y, L)) -> REV(cons(X, rev(rev2(Y, L))))
REV2(X, cons(Y, L)) -> REV(rev2(Y, L))
REV2(X, cons(Y, L)) -> REV2(Y, L)

Furthermore, R contains two SCCs.


   R
DPs
       →DP Problem 1
Forward Instantiation Transformation
       →DP Problem 2
Nar


Dependency Pair:

REV1(X, cons(Y, L)) -> REV1(Y, L)


Rules:


rev1(0, nil) -> 0
rev1(s(X), nil) -> s(X)
rev1(X, cons(Y, L)) -> rev1(Y, L)
rev(nil) -> nil
rev(cons(X, L)) -> cons(rev1(X, L), rev2(X, L))
rev2(X, nil) -> nil
rev2(X, cons(Y, L)) -> rev(cons(X, rev(rev2(Y, L))))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

REV1(X, cons(Y, L)) -> REV1(Y, L)
one new Dependency Pair is created:

REV1(X, cons(Y0, cons(Y'', L''))) -> REV1(Y0, cons(Y'', L''))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
           →DP Problem 3
Forward Instantiation Transformation
       →DP Problem 2
Nar


Dependency Pair:

REV1(X, cons(Y0, cons(Y'', L''))) -> REV1(Y0, cons(Y'', L''))


Rules:


rev1(0, nil) -> 0
rev1(s(X), nil) -> s(X)
rev1(X, cons(Y, L)) -> rev1(Y, L)
rev(nil) -> nil
rev(cons(X, L)) -> cons(rev1(X, L), rev2(X, L))
rev2(X, nil) -> nil
rev2(X, cons(Y, L)) -> rev(cons(X, rev(rev2(Y, L))))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

REV1(X, cons(Y0, cons(Y'', L''))) -> REV1(Y0, cons(Y'', L''))
one new Dependency Pair is created:

REV1(X, cons(Y0'', cons(Y''0, cons(Y'''', L'''')))) -> REV1(Y0'', cons(Y''0, cons(Y'''', L'''')))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
           →DP Problem 3
FwdInst
             ...
               →DP Problem 4
Argument Filtering and Ordering
       →DP Problem 2
Nar


Dependency Pair:

REV1(X, cons(Y0'', cons(Y''0, cons(Y'''', L'''')))) -> REV1(Y0'', cons(Y''0, cons(Y'''', L'''')))


Rules:


rev1(0, nil) -> 0
rev1(s(X), nil) -> s(X)
rev1(X, cons(Y, L)) -> rev1(Y, L)
rev(nil) -> nil
rev(cons(X, L)) -> cons(rev1(X, L), rev2(X, L))
rev2(X, nil) -> nil
rev2(X, cons(Y, L)) -> rev(cons(X, rev(rev2(Y, L))))


Strategy:

innermost




The following dependency pair can be strictly oriented:

REV1(X, cons(Y0'', cons(Y''0, cons(Y'''', L'''')))) -> REV1(Y0'', cons(Y''0, cons(Y'''', L'''')))


There are no usable rules for innermost that need to be oriented.
Used ordering: Homeomorphic Embedding Order with EMB
resulting in one new DP problem.
Used Argument Filtering System:
REV1(x1, x2) -> x2
cons(x1, x2) -> cons(x1, x2)


   R
DPs
       →DP Problem 1
FwdInst
           →DP Problem 3
FwdInst
             ...
               →DP Problem 5
Dependency Graph
       →DP Problem 2
Nar


Dependency Pair:


Rules:


rev1(0, nil) -> 0
rev1(s(X), nil) -> s(X)
rev1(X, cons(Y, L)) -> rev1(Y, L)
rev(nil) -> nil
rev(cons(X, L)) -> cons(rev1(X, L), rev2(X, L))
rev2(X, nil) -> nil
rev2(X, cons(Y, L)) -> rev(cons(X, rev(rev2(Y, L))))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Narrowing Transformation


Dependency Pairs:

REV2(X, cons(Y, L)) -> REV2(Y, L)
REV2(X, cons(Y, L)) -> REV(rev2(Y, L))
REV2(X, cons(Y, L)) -> REV(cons(X, rev(rev2(Y, L))))
REV(cons(X, L)) -> REV2(X, L)


Rules:


rev1(0, nil) -> 0
rev1(s(X), nil) -> s(X)
rev1(X, cons(Y, L)) -> rev1(Y, L)
rev(nil) -> nil
rev(cons(X, L)) -> cons(rev1(X, L), rev2(X, L))
rev2(X, nil) -> nil
rev2(X, cons(Y, L)) -> rev(cons(X, rev(rev2(Y, L))))


Strategy:

innermost




On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

REV2(X, cons(Y, L)) -> REV(rev2(Y, L))
two new Dependency Pairs are created:

REV2(X, cons(Y', nil)) -> REV(nil)
REV2(X, cons(Y0, cons(Y'', L''))) -> REV(rev(cons(Y0, rev(rev2(Y'', L'')))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 6
Rewriting Transformation


Dependency Pairs:

REV2(X, cons(Y0, cons(Y'', L''))) -> REV(rev(cons(Y0, rev(rev2(Y'', L'')))))
REV(cons(X, L)) -> REV2(X, L)
REV2(X, cons(Y, L)) -> REV(cons(X, rev(rev2(Y, L))))
REV2(X, cons(Y, L)) -> REV2(Y, L)


Rules:


rev1(0, nil) -> 0
rev1(s(X), nil) -> s(X)
rev1(X, cons(Y, L)) -> rev1(Y, L)
rev(nil) -> nil
rev(cons(X, L)) -> cons(rev1(X, L), rev2(X, L))
rev2(X, nil) -> nil
rev2(X, cons(Y, L)) -> rev(cons(X, rev(rev2(Y, L))))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

REV2(X, cons(Y0, cons(Y'', L''))) -> REV(rev(cons(Y0, rev(rev2(Y'', L'')))))
one new Dependency Pair is created:

REV2(X, cons(Y0, cons(Y'', L''))) -> REV(cons(rev1(Y0, rev(rev2(Y'', L''))), rev2(Y0, rev(rev2(Y'', L'')))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 6
Rw
             ...
               →DP Problem 7
Forward Instantiation Transformation


Dependency Pairs:

REV2(X, cons(Y0, cons(Y'', L''))) -> REV(cons(rev1(Y0, rev(rev2(Y'', L''))), rev2(Y0, rev(rev2(Y'', L'')))))
REV2(X, cons(Y, L)) -> REV2(Y, L)
REV2(X, cons(Y, L)) -> REV(cons(X, rev(rev2(Y, L))))
REV(cons(X, L)) -> REV2(X, L)


Rules:


rev1(0, nil) -> 0
rev1(s(X), nil) -> s(X)
rev1(X, cons(Y, L)) -> rev1(Y, L)
rev(nil) -> nil
rev(cons(X, L)) -> cons(rev1(X, L), rev2(X, L))
rev2(X, nil) -> nil
rev2(X, cons(Y, L)) -> rev(cons(X, rev(rev2(Y, L))))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

REV(cons(X, L)) -> REV2(X, L)
two new Dependency Pairs are created:

REV(cons(X'', cons(Y'', L''))) -> REV2(X'', cons(Y'', L''))
REV(cons(X'', cons(Y0'', cons(Y'''', L'''')))) -> REV2(X'', cons(Y0'', cons(Y'''', L'''')))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 6
Rw
             ...
               →DP Problem 8
Narrowing Transformation


Dependency Pairs:

REV2(X, cons(Y, L)) -> REV2(Y, L)
REV(cons(X'', cons(Y0'', cons(Y'''', L'''')))) -> REV2(X'', cons(Y0'', cons(Y'''', L'''')))
REV2(X, cons(Y, L)) -> REV(cons(X, rev(rev2(Y, L))))
REV(cons(X'', cons(Y'', L''))) -> REV2(X'', cons(Y'', L''))
REV2(X, cons(Y0, cons(Y'', L''))) -> REV(cons(rev1(Y0, rev(rev2(Y'', L''))), rev2(Y0, rev(rev2(Y'', L'')))))


Rules:


rev1(0, nil) -> 0
rev1(s(X), nil) -> s(X)
rev1(X, cons(Y, L)) -> rev1(Y, L)
rev(nil) -> nil
rev(cons(X, L)) -> cons(rev1(X, L), rev2(X, L))
rev2(X, nil) -> nil
rev2(X, cons(Y, L)) -> rev(cons(X, rev(rev2(Y, L))))


Strategy:

innermost




On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

REV2(X, cons(Y, L)) -> REV(cons(X, rev(rev2(Y, L))))
two new Dependency Pairs are created:

REV2(X, cons(Y', nil)) -> REV(cons(X, rev(nil)))
REV2(X, cons(Y0, cons(Y'', L''))) -> REV(cons(X, rev(rev(cons(Y0, rev(rev2(Y'', L'')))))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 6
Rw
             ...
               →DP Problem 9
Rewriting Transformation


Dependency Pairs:

REV2(X, cons(Y0, cons(Y'', L''))) -> REV(cons(X, rev(rev(cons(Y0, rev(rev2(Y'', L'')))))))
REV(cons(X'', cons(Y0'', cons(Y'''', L'''')))) -> REV2(X'', cons(Y0'', cons(Y'''', L'''')))
REV2(X, cons(Y', nil)) -> REV(cons(X, rev(nil)))
REV(cons(X'', cons(Y'', L''))) -> REV2(X'', cons(Y'', L''))
REV2(X, cons(Y0, cons(Y'', L''))) -> REV(cons(rev1(Y0, rev(rev2(Y'', L''))), rev2(Y0, rev(rev2(Y'', L'')))))
REV2(X, cons(Y, L)) -> REV2(Y, L)


Rules:


rev1(0, nil) -> 0
rev1(s(X), nil) -> s(X)
rev1(X, cons(Y, L)) -> rev1(Y, L)
rev(nil) -> nil
rev(cons(X, L)) -> cons(rev1(X, L), rev2(X, L))
rev2(X, nil) -> nil
rev2(X, cons(Y, L)) -> rev(cons(X, rev(rev2(Y, L))))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

REV2(X, cons(Y', nil)) -> REV(cons(X, rev(nil)))
one new Dependency Pair is created:

REV2(X, cons(Y', nil)) -> REV(cons(X, nil))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 6
Rw
             ...
               →DP Problem 10
Rewriting Transformation


Dependency Pairs:

REV(cons(X'', cons(Y0'', cons(Y'''', L'''')))) -> REV2(X'', cons(Y0'', cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y'', L''))) -> REV(cons(rev1(Y0, rev(rev2(Y'', L''))), rev2(Y0, rev(rev2(Y'', L'')))))
REV2(X, cons(Y, L)) -> REV2(Y, L)
REV(cons(X'', cons(Y'', L''))) -> REV2(X'', cons(Y'', L''))
REV2(X, cons(Y0, cons(Y'', L''))) -> REV(cons(X, rev(rev(cons(Y0, rev(rev2(Y'', L'')))))))


Rules:


rev1(0, nil) -> 0
rev1(s(X), nil) -> s(X)
rev1(X, cons(Y, L)) -> rev1(Y, L)
rev(nil) -> nil
rev(cons(X, L)) -> cons(rev1(X, L), rev2(X, L))
rev2(X, nil) -> nil
rev2(X, cons(Y, L)) -> rev(cons(X, rev(rev2(Y, L))))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

REV2(X, cons(Y0, cons(Y'', L''))) -> REV(cons(X, rev(rev(cons(Y0, rev(rev2(Y'', L'')))))))
one new Dependency Pair is created:

REV2(X, cons(Y0, cons(Y'', L''))) -> REV(cons(X, rev(cons(rev1(Y0, rev(rev2(Y'', L''))), rev2(Y0, rev(rev2(Y'', L'')))))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 6
Rw
             ...
               →DP Problem 11
Rewriting Transformation


Dependency Pairs:

REV2(X, cons(Y0, cons(Y'', L''))) -> REV(cons(X, rev(cons(rev1(Y0, rev(rev2(Y'', L''))), rev2(Y0, rev(rev2(Y'', L'')))))))
REV(cons(X'', cons(Y'', L''))) -> REV2(X'', cons(Y'', L''))
REV2(X, cons(Y0, cons(Y'', L''))) -> REV(cons(rev1(Y0, rev(rev2(Y'', L''))), rev2(Y0, rev(rev2(Y'', L'')))))
REV2(X, cons(Y, L)) -> REV2(Y, L)
REV(cons(X'', cons(Y0'', cons(Y'''', L'''')))) -> REV2(X'', cons(Y0'', cons(Y'''', L'''')))


Rules:


rev1(0, nil) -> 0
rev1(s(X), nil) -> s(X)
rev1(X, cons(Y, L)) -> rev1(Y, L)
rev(nil) -> nil
rev(cons(X, L)) -> cons(rev1(X, L), rev2(X, L))
rev2(X, nil) -> nil
rev2(X, cons(Y, L)) -> rev(cons(X, rev(rev2(Y, L))))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

REV2(X, cons(Y0, cons(Y'', L''))) -> REV(cons(X, rev(cons(rev1(Y0, rev(rev2(Y'', L''))), rev2(Y0, rev(rev2(Y'', L'')))))))
one new Dependency Pair is created:

REV2(X, cons(Y0, cons(Y'', L''))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(rev2(Y'', L''))), rev2(Y0, rev(rev2(Y'', L'')))), rev2(rev1(Y0, rev(rev2(Y'', L''))), rev2(Y0, rev(rev2(Y'', L'')))))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 6
Rw
             ...
               →DP Problem 12
Forward Instantiation Transformation


Dependency Pairs:

REV2(X, cons(Y0, cons(Y'', L''))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(rev2(Y'', L''))), rev2(Y0, rev(rev2(Y'', L'')))), rev2(rev1(Y0, rev(rev2(Y'', L''))), rev2(Y0, rev(rev2(Y'', L'')))))))
REV(cons(X'', cons(Y0'', cons(Y'''', L'''')))) -> REV2(X'', cons(Y0'', cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y'', L''))) -> REV(cons(rev1(Y0, rev(rev2(Y'', L''))), rev2(Y0, rev(rev2(Y'', L'')))))
REV2(X, cons(Y, L)) -> REV2(Y, L)
REV(cons(X'', cons(Y'', L''))) -> REV2(X'', cons(Y'', L''))


Rules:


rev1(0, nil) -> 0
rev1(s(X), nil) -> s(X)
rev1(X, cons(Y, L)) -> rev1(Y, L)
rev(nil) -> nil
rev(cons(X, L)) -> cons(rev1(X, L), rev2(X, L))
rev2(X, nil) -> nil
rev2(X, cons(Y, L)) -> rev(cons(X, rev(rev2(Y, L))))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

REV2(X, cons(Y, L)) -> REV2(Y, L)
two new Dependency Pairs are created:

REV2(X, cons(Y0, cons(Y'', L''))) -> REV2(Y0, cons(Y'', L''))
REV2(X, cons(Y', cons(Y0'', cons(Y'''', L'''')))) -> REV2(Y', cons(Y0'', cons(Y'''', L'''')))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 6
Rw
             ...
               →DP Problem 13
Forward Instantiation Transformation


Dependency Pairs:

REV2(X, cons(Y', cons(Y0'', cons(Y'''', L'''')))) -> REV2(Y', cons(Y0'', cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y'', L''))) -> REV2(Y0, cons(Y'', L''))
REV(cons(X'', cons(Y0'', cons(Y'''', L'''')))) -> REV2(X'', cons(Y0'', cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y'', L''))) -> REV(cons(rev1(Y0, rev(rev2(Y'', L''))), rev2(Y0, rev(rev2(Y'', L'')))))
REV(cons(X'', cons(Y'', L''))) -> REV2(X'', cons(Y'', L''))
REV2(X, cons(Y0, cons(Y'', L''))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(rev2(Y'', L''))), rev2(Y0, rev(rev2(Y'', L'')))), rev2(rev1(Y0, rev(rev2(Y'', L''))), rev2(Y0, rev(rev2(Y'', L'')))))))


Rules:


rev1(0, nil) -> 0
rev1(s(X), nil) -> s(X)
rev1(X, cons(Y, L)) -> rev1(Y, L)
rev(nil) -> nil
rev(cons(X, L)) -> cons(rev1(X, L), rev2(X, L))
rev2(X, nil) -> nil
rev2(X, cons(Y, L)) -> rev(cons(X, rev(rev2(Y, L))))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

REV(cons(X'', cons(Y'', L''))) -> REV2(X'', cons(Y'', L''))
two new Dependency Pairs are created:

REV(cons(X''', cons(Y''0, cons(Y'''', L'''')))) -> REV2(X''', cons(Y''0, cons(Y'''', L'''')))
REV(cons(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 6
Rw
             ...
               →DP Problem 14
Forward Instantiation Transformation


Dependency Pairs:

REV(cons(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0, cons(Y'', L''))) -> REV2(Y0, cons(Y'', L''))
REV(cons(X''', cons(Y''0, cons(Y'''', L'''')))) -> REV2(X''', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y'', L''))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(rev2(Y'', L''))), rev2(Y0, rev(rev2(Y'', L'')))), rev2(rev1(Y0, rev(rev2(Y'', L''))), rev2(Y0, rev(rev2(Y'', L'')))))))
REV(cons(X'', cons(Y0'', cons(Y'''', L'''')))) -> REV2(X'', cons(Y0'', cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y'', L''))) -> REV(cons(rev1(Y0, rev(rev2(Y'', L''))), rev2(Y0, rev(rev2(Y'', L'')))))
REV2(X, cons(Y', cons(Y0'', cons(Y'''', L'''')))) -> REV2(Y', cons(Y0'', cons(Y'''', L'''')))


Rules:


rev1(0, nil) -> 0
rev1(s(X), nil) -> s(X)
rev1(X, cons(Y, L)) -> rev1(Y, L)
rev(nil) -> nil
rev(cons(X, L)) -> cons(rev1(X, L), rev2(X, L))
rev2(X, nil) -> nil
rev2(X, cons(Y, L)) -> rev(cons(X, rev(rev2(Y, L))))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

REV2(X, cons(Y0, cons(Y'', L''))) -> REV2(Y0, cons(Y'', L''))
two new Dependency Pairs are created:

REV2(X, cons(Y0'', cons(Y''0, cons(Y'''', L'''')))) -> REV2(Y0'', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 6
Rw
             ...
               →DP Problem 15
Narrowing Transformation


Dependency Pairs:

REV2(X, cons(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0'', cons(Y''0, cons(Y'''', L'''')))) -> REV2(Y0'', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y', cons(Y0'', cons(Y'''', L'''')))) -> REV2(Y', cons(Y0'', cons(Y'''', L'''')))
REV(cons(X''', cons(Y''0, cons(Y'''', L'''')))) -> REV2(X''', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y'', L''))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(rev2(Y'', L''))), rev2(Y0, rev(rev2(Y'', L'')))), rev2(rev1(Y0, rev(rev2(Y'', L''))), rev2(Y0, rev(rev2(Y'', L'')))))))
REV(cons(X'', cons(Y0'', cons(Y'''', L'''')))) -> REV2(X'', cons(Y0'', cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y'', L''))) -> REV(cons(rev1(Y0, rev(rev2(Y'', L''))), rev2(Y0, rev(rev2(Y'', L'')))))
REV(cons(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))


Rules:


rev1(0, nil) -> 0
rev1(s(X), nil) -> s(X)
rev1(X, cons(Y, L)) -> rev1(Y, L)
rev(nil) -> nil
rev(cons(X, L)) -> cons(rev1(X, L), rev2(X, L))
rev2(X, nil) -> nil
rev2(X, cons(Y, L)) -> rev(cons(X, rev(rev2(Y, L))))


Strategy:

innermost




On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

REV2(X, cons(Y0, cons(Y'', L''))) -> REV(cons(rev1(Y0, rev(rev2(Y'', L''))), rev2(Y0, rev(rev2(Y'', L'')))))
four new Dependency Pairs are created:

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(rev1(Y0, rev(nil)), rev2(Y0, rev(rev2(Y''', nil)))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(Y0, rev(rev(cons(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(nil))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 6
Rw
             ...
               →DP Problem 16
Rewriting Transformation


Dependency Pairs:

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(nil))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV(cons(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(Y0, rev(rev(cons(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))
REV(cons(X''', cons(Y''0, cons(Y'''', L'''')))) -> REV2(X''', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(rev1(Y0, rev(nil)), rev2(Y0, rev(rev2(Y''', nil)))))
REV2(X, cons(Y0'', cons(Y''0, cons(Y'''', L'''')))) -> REV2(Y0'', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y', cons(Y0'', cons(Y'''', L'''')))) -> REV2(Y', cons(Y0'', cons(Y'''', L'''')))
REV(cons(X'', cons(Y0'', cons(Y'''', L'''')))) -> REV2(X'', cons(Y0'', cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y'', L''))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(rev2(Y'', L''))), rev2(Y0, rev(rev2(Y'', L'')))), rev2(rev1(Y0, rev(rev2(Y'', L''))), rev2(Y0, rev(rev2(Y'', L'')))))))
REV2(X, cons(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))


Rules:


rev1(0, nil) -> 0
rev1(s(X), nil) -> s(X)
rev1(X, cons(Y, L)) -> rev1(Y, L)
rev(nil) -> nil
rev(cons(X, L)) -> cons(rev1(X, L), rev2(X, L))
rev2(X, nil) -> nil
rev2(X, cons(Y, L)) -> rev(cons(X, rev(rev2(Y, L))))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(rev1(Y0, rev(nil)), rev2(Y0, rev(rev2(Y''', nil)))))
one new Dependency Pair is created:

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(rev1(Y0, nil), rev2(Y0, rev(rev2(Y''', nil)))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 6
Rw
             ...
               →DP Problem 17
Rewriting Transformation


Dependency Pairs:

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(rev1(Y0, nil), rev2(Y0, rev(rev2(Y''', nil)))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV(cons(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(Y0, rev(rev(cons(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))
REV2(X, cons(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0'', cons(Y''0, cons(Y'''', L'''')))) -> REV2(Y0'', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y', cons(Y0'', cons(Y'''', L'''')))) -> REV2(Y', cons(Y0'', cons(Y'''', L'''')))
REV(cons(X''', cons(Y''0, cons(Y'''', L'''')))) -> REV2(X''', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y'', L''))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(rev2(Y'', L''))), rev2(Y0, rev(rev2(Y'', L'')))), rev2(rev1(Y0, rev(rev2(Y'', L''))), rev2(Y0, rev(rev2(Y'', L'')))))))
REV(cons(X'', cons(Y0'', cons(Y'''', L'''')))) -> REV2(X'', cons(Y0'', cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(nil))))


Rules:


rev1(0, nil) -> 0
rev1(s(X), nil) -> s(X)
rev1(X, cons(Y, L)) -> rev1(Y, L)
rev(nil) -> nil
rev(cons(X, L)) -> cons(rev1(X, L), rev2(X, L))
rev2(X, nil) -> nil
rev2(X, cons(Y, L)) -> rev(cons(X, rev(rev2(Y, L))))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(Y0, rev(rev(cons(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))
one new Dependency Pair is created:

REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(Y0, rev(cons(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 6
Rw
             ...
               →DP Problem 18
Rewriting Transformation


Dependency Pairs:

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(nil))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(Y0, rev(cons(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))
REV(cons(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV2(X, cons(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0'', cons(Y''0, cons(Y'''', L'''')))) -> REV2(Y0'', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y', cons(Y0'', cons(Y'''', L'''')))) -> REV2(Y', cons(Y0'', cons(Y'''', L'''')))
REV(cons(X''', cons(Y''0, cons(Y'''', L'''')))) -> REV2(X''', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y'', L''))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(rev2(Y'', L''))), rev2(Y0, rev(rev2(Y'', L'')))), rev2(rev1(Y0, rev(rev2(Y'', L''))), rev2(Y0, rev(rev2(Y'', L'')))))))
REV(cons(X'', cons(Y0'', cons(Y'''', L'''')))) -> REV2(X'', cons(Y0'', cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(rev1(Y0, nil), rev2(Y0, rev(rev2(Y''', nil)))))


Rules:


rev1(0, nil) -> 0
rev1(s(X), nil) -> s(X)
rev1(X, cons(Y, L)) -> rev1(Y, L)
rev(nil) -> nil
rev(cons(X, L)) -> cons(rev1(X, L), rev2(X, L))
rev2(X, nil) -> nil
rev2(X, cons(Y, L)) -> rev(cons(X, rev(rev2(Y, L))))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(nil))))
one new Dependency Pair is created:

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(rev1(Y0, rev(nil)), rev2(Y0, rev(nil))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 6
Rw
             ...
               →DP Problem 19
Rewriting Transformation


Dependency Pairs:

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(rev1(Y0, rev(nil)), rev2(Y0, rev(nil))))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(rev1(Y0, nil), rev2(Y0, rev(rev2(Y''', nil)))))
REV(cons(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV2(X, cons(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0'', cons(Y''0, cons(Y'''', L'''')))) -> REV2(Y0'', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y', cons(Y0'', cons(Y'''', L'''')))) -> REV2(Y', cons(Y0'', cons(Y'''', L'''')))
REV(cons(X''', cons(Y''0, cons(Y'''', L'''')))) -> REV2(X''', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y'', L''))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(rev2(Y'', L''))), rev2(Y0, rev(rev2(Y'', L'')))), rev2(rev1(Y0, rev(rev2(Y'', L''))), rev2(Y0, rev(rev2(Y'', L'')))))))
REV(cons(X'', cons(Y0'', cons(Y'''', L'''')))) -> REV2(X'', cons(Y0'', cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(Y0, rev(cons(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))


Rules:


rev1(0, nil) -> 0
rev1(s(X), nil) -> s(X)
rev1(X, cons(Y, L)) -> rev1(Y, L)
rev(nil) -> nil
rev(cons(X, L)) -> cons(rev1(X, L), rev2(X, L))
rev2(X, nil) -> nil
rev2(X, cons(Y, L)) -> rev(cons(X, rev(rev2(Y, L))))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
one new Dependency Pair is created:

REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(Y0, rev(rev(cons(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 6
Rw
             ...
               →DP Problem 20
Rewriting Transformation


Dependency Pairs:

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(rev1(Y0, nil), rev2(Y0, rev(rev2(Y''', nil)))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(Y0, rev(rev(cons(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV(cons(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(Y0, rev(cons(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))
REV2(X, cons(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0'', cons(Y''0, cons(Y'''', L'''')))) -> REV2(Y0'', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y', cons(Y0'', cons(Y'''', L'''')))) -> REV2(Y', cons(Y0'', cons(Y'''', L'''')))
REV(cons(X''', cons(Y''0, cons(Y'''', L'''')))) -> REV2(X''', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y'', L''))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(rev2(Y'', L''))), rev2(Y0, rev(rev2(Y'', L'')))), rev2(rev1(Y0, rev(rev2(Y'', L''))), rev2(Y0, rev(rev2(Y'', L'')))))))
REV(cons(X'', cons(Y0'', cons(Y'''', L'''')))) -> REV2(X'', cons(Y0'', cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(rev1(Y0, rev(nil)), rev2(Y0, rev(nil))))


Rules:


rev1(0, nil) -> 0
rev1(s(X), nil) -> s(X)
rev1(X, cons(Y, L)) -> rev1(Y, L)
rev(nil) -> nil
rev(cons(X, L)) -> cons(rev1(X, L), rev2(X, L))
rev2(X, nil) -> nil
rev2(X, cons(Y, L)) -> rev(cons(X, rev(rev2(Y, L))))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(rev1(Y0, nil), rev2(Y0, rev(rev2(Y''', nil)))))
one new Dependency Pair is created:

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(rev1(Y0, nil), rev2(Y0, rev(nil))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 6
Rw
             ...
               →DP Problem 21
Rewriting Transformation


Dependency Pairs:

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(rev1(Y0, nil), rev2(Y0, rev(nil))))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(rev1(Y0, rev(nil)), rev2(Y0, rev(nil))))
REV(cons(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(Y0, rev(cons(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))
REV2(X, cons(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0'', cons(Y''0, cons(Y'''', L'''')))) -> REV2(Y0'', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y', cons(Y0'', cons(Y'''', L'''')))) -> REV2(Y', cons(Y0'', cons(Y'''', L'''')))
REV(cons(X''', cons(Y''0, cons(Y'''', L'''')))) -> REV2(X''', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y'', L''))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(rev2(Y'', L''))), rev2(Y0, rev(rev2(Y'', L'')))), rev2(rev1(Y0, rev(rev2(Y'', L''))), rev2(Y0, rev(rev2(Y'', L'')))))))
REV(cons(X'', cons(Y0'', cons(Y'''', L'''')))) -> REV2(X'', cons(Y0'', cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(Y0, rev(rev(cons(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))


Rules:


rev1(0, nil) -> 0
rev1(s(X), nil) -> s(X)
rev1(X, cons(Y, L)) -> rev1(Y, L)
rev(nil) -> nil
rev(cons(X, L)) -> cons(rev1(X, L), rev2(X, L))
rev2(X, nil) -> nil
rev2(X, cons(Y, L)) -> rev(cons(X, rev(rev2(Y, L))))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(Y0, rev(cons(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))
one new Dependency Pair is created:

REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(Y0, cons(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 6
Rw
             ...
               →DP Problem 22
Rewriting Transformation


Dependency Pairs:

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(rev1(Y0, rev(nil)), rev2(Y0, rev(nil))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(Y0, cons(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))
REV(cons(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(Y0, rev(rev(cons(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV2(X, cons(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0'', cons(Y''0, cons(Y'''', L'''')))) -> REV2(Y0'', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y', cons(Y0'', cons(Y'''', L'''')))) -> REV2(Y', cons(Y0'', cons(Y'''', L'''')))
REV(cons(X''', cons(Y''0, cons(Y'''', L'''')))) -> REV2(X''', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y'', L''))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(rev2(Y'', L''))), rev2(Y0, rev(rev2(Y'', L'')))), rev2(rev1(Y0, rev(rev2(Y'', L''))), rev2(Y0, rev(rev2(Y'', L'')))))))
REV(cons(X'', cons(Y0'', cons(Y'''', L'''')))) -> REV2(X'', cons(Y0'', cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(rev1(Y0, nil), rev2(Y0, rev(nil))))


Rules:


rev1(0, nil) -> 0
rev1(s(X), nil) -> s(X)
rev1(X, cons(Y, L)) -> rev1(Y, L)
rev(nil) -> nil
rev(cons(X, L)) -> cons(rev1(X, L), rev2(X, L))
rev2(X, nil) -> nil
rev2(X, cons(Y, L)) -> rev(cons(X, rev(rev2(Y, L))))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(rev1(Y0, rev(nil)), rev2(Y0, rev(nil))))
one new Dependency Pair is created:

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(rev1(Y0, nil), rev2(Y0, rev(nil))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 6
Rw
             ...
               →DP Problem 23
Rewriting Transformation


Dependency Pairs:

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(rev1(Y0, nil), rev2(Y0, rev(nil))))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(rev1(Y0, nil), rev2(Y0, rev(nil))))
REV(cons(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(Y0, rev(rev(cons(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV2(X, cons(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0'', cons(Y''0, cons(Y'''', L'''')))) -> REV2(Y0'', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y', cons(Y0'', cons(Y'''', L'''')))) -> REV2(Y', cons(Y0'', cons(Y'''', L'''')))
REV(cons(X''', cons(Y''0, cons(Y'''', L'''')))) -> REV2(X''', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y'', L''))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(rev2(Y'', L''))), rev2(Y0, rev(rev2(Y'', L'')))), rev2(rev1(Y0, rev(rev2(Y'', L''))), rev2(Y0, rev(rev2(Y'', L'')))))))
REV(cons(X'', cons(Y0'', cons(Y'''', L'''')))) -> REV2(X'', cons(Y0'', cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(Y0, cons(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))


Rules:


rev1(0, nil) -> 0
rev1(s(X), nil) -> s(X)
rev1(X, cons(Y, L)) -> rev1(Y, L)
rev(nil) -> nil
rev(cons(X, L)) -> cons(rev1(X, L), rev2(X, L))
rev2(X, nil) -> nil
rev2(X, cons(Y, L)) -> rev(cons(X, rev(rev2(Y, L))))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(Y0, rev(rev(cons(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
one new Dependency Pair is created:

REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(Y0, rev(cons(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 6
Rw
             ...
               →DP Problem 24
Rewriting Transformation


Dependency Pairs:

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(rev1(Y0, nil), rev2(Y0, rev(nil))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(Y0, rev(cons(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV(cons(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(Y0, cons(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))
REV2(X, cons(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0'', cons(Y''0, cons(Y'''', L'''')))) -> REV2(Y0'', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y', cons(Y0'', cons(Y'''', L'''')))) -> REV2(Y', cons(Y0'', cons(Y'''', L'''')))
REV(cons(X''', cons(Y''0, cons(Y'''', L'''')))) -> REV2(X''', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y'', L''))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(rev2(Y'', L''))), rev2(Y0, rev(rev2(Y'', L'')))), rev2(rev1(Y0, rev(rev2(Y'', L''))), rev2(Y0, rev(rev2(Y'', L'')))))))
REV(cons(X'', cons(Y0'', cons(Y'''', L'''')))) -> REV2(X'', cons(Y0'', cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(rev1(Y0, nil), rev2(Y0, rev(nil))))


Rules:


rev1(0, nil) -> 0
rev1(s(X), nil) -> s(X)
rev1(X, cons(Y, L)) -> rev1(Y, L)
rev(nil) -> nil
rev(cons(X, L)) -> cons(rev1(X, L), rev2(X, L))
rev2(X, nil) -> nil
rev2(X, cons(Y, L)) -> rev(cons(X, rev(rev2(Y, L))))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(rev1(Y0, nil), rev2(Y0, rev(nil))))
one new Dependency Pair is created:

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(rev1(Y0, nil), rev2(Y0, nil)))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 6
Rw
             ...
               →DP Problem 25
Rewriting Transformation


Dependency Pairs:

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(rev1(Y0, nil), rev2(Y0, nil)))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(rev1(Y0, nil), rev2(Y0, rev(nil))))
REV(cons(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(Y0, cons(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))
REV2(X, cons(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0'', cons(Y''0, cons(Y'''', L'''')))) -> REV2(Y0'', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y', cons(Y0'', cons(Y'''', L'''')))) -> REV2(Y', cons(Y0'', cons(Y'''', L'''')))
REV(cons(X''', cons(Y''0, cons(Y'''', L'''')))) -> REV2(X''', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y'', L''))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(rev2(Y'', L''))), rev2(Y0, rev(rev2(Y'', L'')))), rev2(rev1(Y0, rev(rev2(Y'', L''))), rev2(Y0, rev(rev2(Y'', L'')))))))
REV(cons(X'', cons(Y0'', cons(Y'''', L'''')))) -> REV2(X'', cons(Y0'', cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(Y0, rev(cons(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))


Rules:


rev1(0, nil) -> 0
rev1(s(X), nil) -> s(X)
rev1(X, cons(Y, L)) -> rev1(Y, L)
rev(nil) -> nil
rev(cons(X, L)) -> cons(rev1(X, L), rev2(X, L))
rev2(X, nil) -> nil
rev2(X, cons(Y, L)) -> rev(cons(X, rev(rev2(Y, L))))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(Y0, cons(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))
one new Dependency Pair is created:

REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 6
Rw
             ...
               →DP Problem 26
Rewriting Transformation


Dependency Pairs:

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(rev1(Y0, nil), rev2(Y0, rev(nil))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))
REV(cons(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(Y0, rev(cons(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV2(X, cons(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0'', cons(Y''0, cons(Y'''', L'''')))) -> REV2(Y0'', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y', cons(Y0'', cons(Y'''', L'''')))) -> REV2(Y', cons(Y0'', cons(Y'''', L'''')))
REV(cons(X''', cons(Y''0, cons(Y'''', L'''')))) -> REV2(X''', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y'', L''))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(rev2(Y'', L''))), rev2(Y0, rev(rev2(Y'', L'')))), rev2(rev1(Y0, rev(rev2(Y'', L''))), rev2(Y0, rev(rev2(Y'', L'')))))))
REV(cons(X'', cons(Y0'', cons(Y'''', L'''')))) -> REV2(X'', cons(Y0'', cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(rev1(Y0, nil), rev2(Y0, nil)))


Rules:


rev1(0, nil) -> 0
rev1(s(X), nil) -> s(X)
rev1(X, cons(Y, L)) -> rev1(Y, L)
rev(nil) -> nil
rev(cons(X, L)) -> cons(rev1(X, L), rev2(X, L))
rev2(X, nil) -> nil
rev2(X, cons(Y, L)) -> rev(cons(X, rev(rev2(Y, L))))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(rev1(Y0, nil), rev2(Y0, rev(nil))))
one new Dependency Pair is created:

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(rev1(Y0, nil), rev2(Y0, nil)))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 6
Rw
             ...
               →DP Problem 27
Rewriting Transformation


Dependency Pairs:

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(rev1(Y0, nil), rev2(Y0, nil)))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(rev1(Y0, nil), rev2(Y0, nil)))
REV(cons(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(Y0, rev(cons(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV2(X, cons(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0'', cons(Y''0, cons(Y'''', L'''')))) -> REV2(Y0'', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y', cons(Y0'', cons(Y'''', L'''')))) -> REV2(Y', cons(Y0'', cons(Y'''', L'''')))
REV(cons(X''', cons(Y''0, cons(Y'''', L'''')))) -> REV2(X''', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y'', L''))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(rev2(Y'', L''))), rev2(Y0, rev(rev2(Y'', L'')))), rev2(rev1(Y0, rev(rev2(Y'', L''))), rev2(Y0, rev(rev2(Y'', L'')))))))
REV(cons(X'', cons(Y0'', cons(Y'''', L'''')))) -> REV2(X'', cons(Y0'', cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))


Rules:


rev1(0, nil) -> 0
rev1(s(X), nil) -> s(X)
rev1(X, cons(Y, L)) -> rev1(Y, L)
rev(nil) -> nil
rev(cons(X, L)) -> cons(rev1(X, L), rev2(X, L))
rev2(X, nil) -> nil
rev2(X, cons(Y, L)) -> rev(cons(X, rev(rev2(Y, L))))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(Y0, rev(cons(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
one new Dependency Pair is created:

REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(Y0, cons(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 6
Rw
             ...
               →DP Problem 28
Rewriting Transformation


Dependency Pairs:

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(rev1(Y0, nil), rev2(Y0, nil)))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(Y0, cons(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV(cons(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))
REV2(X, cons(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0'', cons(Y''0, cons(Y'''', L'''')))) -> REV2(Y0'', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y', cons(Y0'', cons(Y'''', L'''')))) -> REV2(Y', cons(Y0'', cons(Y'''', L'''')))
REV(cons(X''', cons(Y''0, cons(Y'''', L'''')))) -> REV2(X''', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y'', L''))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(rev2(Y'', L''))), rev2(Y0, rev(rev2(Y'', L'')))), rev2(rev1(Y0, rev(rev2(Y'', L''))), rev2(Y0, rev(rev2(Y'', L'')))))))
REV(cons(X'', cons(Y0'', cons(Y'''', L'''')))) -> REV2(X'', cons(Y0'', cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(rev1(Y0, nil), rev2(Y0, nil)))


Rules:


rev1(0, nil) -> 0
rev1(s(X), nil) -> s(X)
rev1(X, cons(Y, L)) -> rev1(Y, L)
rev(nil) -> nil
rev(cons(X, L)) -> cons(rev1(X, L), rev2(X, L))
rev2(X, nil) -> nil
rev2(X, cons(Y, L)) -> rev(cons(X, rev(rev2(Y, L))))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(rev1(Y0, nil), rev2(Y0, nil)))
one new Dependency Pair is created:

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(rev1(Y0, nil), nil))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 6
Rw
             ...
               →DP Problem 29
Rewriting Transformation


Dependency Pairs:

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(rev1(Y0, nil), rev2(Y0, nil)))
REV(cons(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))
REV2(X, cons(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0'', cons(Y''0, cons(Y'''', L'''')))) -> REV2(Y0'', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y', cons(Y0'', cons(Y'''', L'''')))) -> REV2(Y', cons(Y0'', cons(Y'''', L'''')))
REV(cons(X''', cons(Y''0, cons(Y'''', L'''')))) -> REV2(X''', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y'', L''))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(rev2(Y'', L''))), rev2(Y0, rev(rev2(Y'', L'')))), rev2(rev1(Y0, rev(rev2(Y'', L''))), rev2(Y0, rev(rev2(Y'', L'')))))))
REV(cons(X'', cons(Y0'', cons(Y'''', L'''')))) -> REV2(X'', cons(Y0'', cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(Y0, cons(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))


Rules:


rev1(0, nil) -> 0
rev1(s(X), nil) -> s(X)
rev1(X, cons(Y, L)) -> rev1(Y, L)
rev(nil) -> nil
rev(cons(X, L)) -> cons(rev1(X, L), rev2(X, L))
rev2(X, nil) -> nil
rev2(X, cons(Y, L)) -> rev(cons(X, rev(rev2(Y, L))))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))
one new Dependency Pair is created:

REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 6
Rw
             ...
               →DP Problem 30
Rewriting Transformation


Dependency Pairs:

REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV(cons(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(Y0, cons(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV2(X, cons(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0'', cons(Y''0, cons(Y'''', L'''')))) -> REV2(Y0'', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y', cons(Y0'', cons(Y'''', L'''')))) -> REV2(Y', cons(Y0'', cons(Y'''', L'''')))
REV(cons(X''', cons(Y''0, cons(Y'''', L'''')))) -> REV2(X''', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y'', L''))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(rev2(Y'', L''))), rev2(Y0, rev(rev2(Y'', L'')))), rev2(rev1(Y0, rev(rev2(Y'', L''))), rev2(Y0, rev(rev2(Y'', L'')))))))
REV(cons(X'', cons(Y0'', cons(Y'''', L'''')))) -> REV2(X'', cons(Y0'', cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(rev1(Y0, nil), rev2(Y0, nil)))


Rules:


rev1(0, nil) -> 0
rev1(s(X), nil) -> s(X)
rev1(X, cons(Y, L)) -> rev1(Y, L)
rev(nil) -> nil
rev(cons(X, L)) -> cons(rev1(X, L), rev2(X, L))
rev2(X, nil) -> nil
rev2(X, cons(Y, L)) -> rev(cons(X, rev(rev2(Y, L))))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(rev1(Y0, nil), rev2(Y0, nil)))
one new Dependency Pair is created:

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(rev1(Y0, nil), nil))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 6
Rw
             ...
               →DP Problem 31
Rewriting Transformation


Dependency Pairs:

REV(cons(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(Y0, cons(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV2(X, cons(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0'', cons(Y''0, cons(Y'''', L'''')))) -> REV2(Y0'', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y', cons(Y0'', cons(Y'''', L'''')))) -> REV2(Y', cons(Y0'', cons(Y'''', L'''')))
REV(cons(X''', cons(Y''0, cons(Y'''', L'''')))) -> REV2(X''', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y'', L''))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(rev2(Y'', L''))), rev2(Y0, rev(rev2(Y'', L'')))), rev2(rev1(Y0, rev(rev2(Y'', L''))), rev2(Y0, rev(rev2(Y'', L'')))))))
REV(cons(X'', cons(Y0'', cons(Y'''', L'''')))) -> REV2(X'', cons(Y0'', cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))


Rules:


rev1(0, nil) -> 0
rev1(s(X), nil) -> s(X)
rev1(X, cons(Y, L)) -> rev1(Y, L)
rev(nil) -> nil
rev(cons(X, L)) -> cons(rev1(X, L), rev2(X, L))
rev2(X, nil) -> nil
rev2(X, cons(Y, L)) -> rev(cons(X, rev(rev2(Y, L))))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(Y0, cons(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
one new Dependency Pair is created:

REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 6
Rw
             ...
               →DP Problem 32
Narrowing Transformation


Dependency Pairs:

REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV(cons(X''', cons(Y''0, cons(Y'''', L'''')))) -> REV2(X''', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV2(X, cons(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0'', cons(Y''0, cons(Y'''', L'''')))) -> REV2(Y0'', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y', cons(Y0'', cons(Y'''', L'''')))) -> REV2(Y', cons(Y0'', cons(Y'''', L'''')))
REV(cons(X'', cons(Y0'', cons(Y'''', L'''')))) -> REV2(X'', cons(Y0'', cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y'', L''))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(rev2(Y'', L''))), rev2(Y0, rev(rev2(Y'', L'')))), rev2(rev1(Y0, rev(rev2(Y'', L''))), rev2(Y0, rev(rev2(Y'', L'')))))))
REV(cons(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))


Rules:


rev1(0, nil) -> 0
rev1(s(X), nil) -> s(X)
rev1(X, cons(Y, L)) -> rev1(Y, L)
rev(nil) -> nil
rev(cons(X, L)) -> cons(rev1(X, L), rev2(X, L))
rev2(X, nil) -> nil
rev2(X, cons(Y, L)) -> rev(cons(X, rev(rev2(Y, L))))


Strategy:

innermost




On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

REV2(X, cons(Y0, cons(Y'', L''))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(rev2(Y'', L''))), rev2(Y0, rev(rev2(Y'', L'')))), rev2(rev1(Y0, rev(rev2(Y'', L''))), rev2(Y0, rev(rev2(Y'', L'')))))))
eight new Dependency Pairs are created:

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(nil)), rev2(Y0, rev(rev2(Y''', nil)))), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(rev2(Y''', nil)))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(rev(cons(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(nil))), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(rev2(Y''', nil)))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(rev2(Y''', nil)))), rev2(rev1(Y0, rev(nil)), rev2(Y0, rev(rev2(Y''', nil)))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev(cons(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(rev2(Y''', nil)))), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(nil))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 6
Rw
             ...
               →DP Problem 33
Rewriting Transformation


Dependency Pairs:

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(rev2(Y''', nil)))), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(nil))))))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(rev2(Y''', nil)))), rev2(rev1(Y0, rev(nil)), rev2(Y0, rev(rev2(Y''', nil)))))))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(nil))), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(rev2(Y''', nil)))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev(cons(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(rev(cons(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV(cons(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(nil)), rev2(Y0, rev(rev2(Y''', nil)))), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(rev2(Y''', nil)))))))
REV(cons(X''', cons(Y''0, cons(Y'''', L'''')))) -> REV2(X''', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV2(X, cons(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0'', cons(Y''0, cons(Y'''', L'''')))) -> REV2(Y0'', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y', cons(Y0'', cons(Y'''', L'''')))) -> REV2(Y', cons(Y0'', cons(Y'''', L'''')))
REV(cons(X'', cons(Y0'', cons(Y'''', L'''')))) -> REV2(X'', cons(Y0'', cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))


Rules:


rev1(0, nil) -> 0
rev1(s(X), nil) -> s(X)
rev1(X, cons(Y, L)) -> rev1(Y, L)
rev(nil) -> nil
rev(cons(X, L)) -> cons(rev1(X, L), rev2(X, L))
rev2(X, nil) -> nil
rev2(X, cons(Y, L)) -> rev(cons(X, rev(rev2(Y, L))))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(nil)), rev2(Y0, rev(rev2(Y''', nil)))), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(rev2(Y''', nil)))))))
one new Dependency Pair is created:

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), rev2(Y0, rev(rev2(Y''', nil)))), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(rev2(Y''', nil)))))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 6
Rw
             ...
               →DP Problem 34
Rewriting Transformation


Dependency Pairs:

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), rev2(Y0, rev(rev2(Y''', nil)))), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(rev2(Y''', nil)))))))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(rev2(Y''', nil)))), rev2(rev1(Y0, rev(nil)), rev2(Y0, rev(rev2(Y''', nil)))))))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(nil))), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(rev2(Y''', nil)))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev(cons(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(rev(cons(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV(cons(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV(cons(X''', cons(Y''0, cons(Y'''', L'''')))) -> REV2(X''', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV2(X, cons(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0'', cons(Y''0, cons(Y'''', L'''')))) -> REV2(Y0'', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y', cons(Y0'', cons(Y'''', L'''')))) -> REV2(Y', cons(Y0'', cons(Y'''', L'''')))
REV(cons(X'', cons(Y0'', cons(Y'''', L'''')))) -> REV2(X'', cons(Y0'', cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(rev2(Y''', nil)))), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(nil))))))


Rules:


rev1(0, nil) -> 0
rev1(s(X), nil) -> s(X)
rev1(X, cons(Y, L)) -> rev1(Y, L)
rev(nil) -> nil
rev(cons(X, L)) -> cons(rev1(X, L), rev2(X, L))
rev2(X, nil) -> nil
rev2(X, cons(Y, L)) -> rev(cons(X, rev(rev2(Y, L))))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(rev(cons(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
one new Dependency Pair is created:

REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(cons(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 6
Rw
             ...
               →DP Problem 35
Rewriting Transformation


Dependency Pairs:

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(rev2(Y''', nil)))), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(nil))))))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(rev2(Y''', nil)))), rev2(rev1(Y0, rev(nil)), rev2(Y0, rev(rev2(Y''', nil)))))))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(nil))), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(rev2(Y''', nil)))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(cons(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev(cons(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV(cons(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV(cons(X''', cons(Y''0, cons(Y'''', L'''')))) -> REV2(X''', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV2(X, cons(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0'', cons(Y''0, cons(Y'''', L'''')))) -> REV2(Y0'', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y', cons(Y0'', cons(Y'''', L'''')))) -> REV2(Y', cons(Y0'', cons(Y'''', L'''')))
REV(cons(X'', cons(Y0'', cons(Y'''', L'''')))) -> REV2(X'', cons(Y0'', cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), rev2(Y0, rev(rev2(Y''', nil)))), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(rev2(Y''', nil)))))))


Rules:


rev1(0, nil) -> 0
rev1(s(X), nil) -> s(X)
rev1(X, cons(Y, L)) -> rev1(Y, L)
rev(nil) -> nil
rev(cons(X, L)) -> cons(rev1(X, L), rev2(X, L))
rev2(X, nil) -> nil
rev2(X, cons(Y, L)) -> rev(cons(X, rev(rev2(Y, L))))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(nil))), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(rev2(Y''', nil)))))))
one new Dependency Pair is created:

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(nil)), rev2(Y0, rev(nil))), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(rev2(Y''', nil)))))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 6
Rw
             ...
               →DP Problem 36
Rewriting Transformation


Dependency Pairs:

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(nil)), rev2(Y0, rev(nil))), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(rev2(Y''', nil)))))))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), rev2(Y0, rev(rev2(Y''', nil)))), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(rev2(Y''', nil)))))))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(rev2(Y''', nil)))), rev2(rev1(Y0, rev(nil)), rev2(Y0, rev(rev2(Y''', nil)))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(cons(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev(cons(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV(cons(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV(cons(X''', cons(Y''0, cons(Y'''', L'''')))) -> REV2(X''', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV2(X, cons(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0'', cons(Y''0, cons(Y'''', L'''')))) -> REV2(Y0'', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y', cons(Y0'', cons(Y'''', L'''')))) -> REV2(Y', cons(Y0'', cons(Y'''', L'''')))
REV(cons(X'', cons(Y0'', cons(Y'''', L'''')))) -> REV2(X'', cons(Y0'', cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(rev2(Y''', nil)))), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(nil))))))


Rules:


rev1(0, nil) -> 0
rev1(s(X), nil) -> s(X)
rev1(X, cons(Y, L)) -> rev1(Y, L)
rev(nil) -> nil
rev(cons(X, L)) -> cons(rev1(X, L), rev2(X, L))
rev2(X, nil) -> nil
rev2(X, cons(Y, L)) -> rev(cons(X, rev(rev2(Y, L))))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
one new Dependency Pair is created:

REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(rev(cons(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 6
Rw
             ...
               →DP Problem 37
Rewriting Transformation


Dependency Pairs:

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), rev2(Y0, rev(rev2(Y''', nil)))), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(rev2(Y''', nil)))))))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(rev2(Y''', nil)))), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(nil))))))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(rev2(Y''', nil)))), rev2(rev1(Y0, rev(nil)), rev2(Y0, rev(rev2(Y''', nil)))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(rev(cons(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(cons(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev(cons(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV(cons(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV(cons(X''', cons(Y''0, cons(Y'''', L'''')))) -> REV2(X''', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV2(X, cons(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0'', cons(Y''0, cons(Y'''', L'''')))) -> REV2(Y0'', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y', cons(Y0'', cons(Y'''', L'''')))) -> REV2(Y', cons(Y0'', cons(Y'''', L'''')))
REV(cons(X'', cons(Y0'', cons(Y'''', L'''')))) -> REV2(X'', cons(Y0'', cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(nil)), rev2(Y0, rev(nil))), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(rev2(Y''', nil)))))))


Rules:


rev1(0, nil) -> 0
rev1(s(X), nil) -> s(X)
rev1(X, cons(Y, L)) -> rev1(Y, L)
rev(nil) -> nil
rev(cons(X, L)) -> cons(rev1(X, L), rev2(X, L))
rev2(X, nil) -> nil
rev2(X, cons(Y, L)) -> rev(cons(X, rev(rev2(Y, L))))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(rev2(Y''', nil)))), rev2(rev1(Y0, rev(nil)), rev2(Y0, rev(rev2(Y''', nil)))))))
one new Dependency Pair is created:

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(nil)), rev2(Y0, rev(rev2(Y''', nil)))), rev2(rev1(Y0, rev(nil)), rev2(Y0, rev(rev2(Y''', nil)))))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 6
Rw
             ...
               →DP Problem 38
Rewriting Transformation


Dependency Pairs:

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(nil)), rev2(Y0, rev(rev2(Y''', nil)))), rev2(rev1(Y0, rev(nil)), rev2(Y0, rev(rev2(Y''', nil)))))))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(nil)), rev2(Y0, rev(nil))), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(rev2(Y''', nil)))))))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(rev2(Y''', nil)))), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(nil))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(rev(cons(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(cons(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev(cons(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV(cons(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV(cons(X''', cons(Y''0, cons(Y'''', L'''')))) -> REV2(X''', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV2(X, cons(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0'', cons(Y''0, cons(Y'''', L'''')))) -> REV2(Y0'', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y', cons(Y0'', cons(Y'''', L'''')))) -> REV2(Y', cons(Y0'', cons(Y'''', L'''')))
REV(cons(X'', cons(Y0'', cons(Y'''', L'''')))) -> REV2(X'', cons(Y0'', cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), rev2(Y0, rev(rev2(Y''', nil)))), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(rev2(Y''', nil)))))))


Rules:


rev1(0, nil) -> 0
rev1(s(X), nil) -> s(X)
rev1(X, cons(Y, L)) -> rev1(Y, L)
rev(nil) -> nil
rev(cons(X, L)) -> cons(rev1(X, L), rev2(X, L))
rev2(X, nil) -> nil
rev2(X, cons(Y, L)) -> rev(cons(X, rev(rev2(Y, L))))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev(cons(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
one new Dependency Pair is created:

REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(rev(cons(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev(cons(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 6
Rw
             ...
               →DP Problem 39
Rewriting Transformation


Dependency Pairs:

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(nil)), rev2(Y0, rev(nil))), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(rev2(Y''', nil)))))))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), rev2(Y0, rev(rev2(Y''', nil)))), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(rev2(Y''', nil)))))))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(rev2(Y''', nil)))), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(nil))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(rev(cons(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev(cons(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(rev(cons(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(cons(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))))
REV(cons(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV(cons(X''', cons(Y''0, cons(Y'''', L'''')))) -> REV2(X''', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV2(X, cons(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0'', cons(Y''0, cons(Y'''', L'''')))) -> REV2(Y0'', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y', cons(Y0'', cons(Y'''', L'''')))) -> REV2(Y', cons(Y0'', cons(Y'''', L'''')))
REV(cons(X'', cons(Y0'', cons(Y'''', L'''')))) -> REV2(X'', cons(Y0'', cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(nil)), rev2(Y0, rev(rev2(Y''', nil)))), rev2(rev1(Y0, rev(nil)), rev2(Y0, rev(rev2(Y''', nil)))))))


Rules:


rev1(0, nil) -> 0
rev1(s(X), nil) -> s(X)
rev1(X, cons(Y, L)) -> rev1(Y, L)
rev(nil) -> nil
rev(cons(X, L)) -> cons(rev1(X, L), rev2(X, L))
rev2(X, nil) -> nil
rev2(X, cons(Y, L)) -> rev(cons(X, rev(rev2(Y, L))))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(rev2(Y''', nil)))), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(nil))))))
one new Dependency Pair is created:

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(nil)), rev2(Y0, rev(rev2(Y''', nil)))), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(nil))))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 6
Rw
             ...
               →DP Problem 40
Rewriting Transformation


Dependency Pairs:

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(nil)), rev2(Y0, rev(rev2(Y''', nil)))), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(nil))))))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(nil)), rev2(Y0, rev(rev2(Y''', nil)))), rev2(rev1(Y0, rev(nil)), rev2(Y0, rev(rev2(Y''', nil)))))))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), rev2(Y0, rev(rev2(Y''', nil)))), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(rev2(Y''', nil)))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(rev(cons(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev(cons(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(rev(cons(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(cons(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))))
REV(cons(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV(cons(X''', cons(Y''0, cons(Y'''', L'''')))) -> REV2(X''', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV2(X, cons(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0'', cons(Y''0, cons(Y'''', L'''')))) -> REV2(Y0'', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y', cons(Y0'', cons(Y'''', L'''')))) -> REV2(Y', cons(Y0'', cons(Y'''', L'''')))
REV(cons(X'', cons(Y0'', cons(Y'''', L'''')))) -> REV2(X'', cons(Y0'', cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(nil)), rev2(Y0, rev(nil))), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(rev2(Y''', nil)))))))


Rules:


rev1(0, nil) -> 0
rev1(s(X), nil) -> s(X)
rev1(X, cons(Y, L)) -> rev1(Y, L)
rev(nil) -> nil
rev(cons(X, L)) -> cons(rev1(X, L), rev2(X, L))
rev2(X, nil) -> nil
rev2(X, cons(Y, L)) -> rev(cons(X, rev(rev2(Y, L))))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))))
one new Dependency Pair is created:

REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(rev(cons(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 6
Rw
             ...
               →DP Problem 41
Rewriting Transformation


Dependency Pairs:

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(nil)), rev2(Y0, rev(rev2(Y''', nil)))), rev2(rev1(Y0, rev(nil)), rev2(Y0, rev(rev2(Y''', nil)))))))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(nil)), rev2(Y0, rev(nil))), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(rev2(Y''', nil)))))))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), rev2(Y0, rev(rev2(Y''', nil)))), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(rev2(Y''', nil)))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(rev(cons(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(rev(cons(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev(cons(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(rev(cons(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(cons(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV(cons(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV(cons(X''', cons(Y''0, cons(Y'''', L'''')))) -> REV2(X''', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV2(X, cons(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0'', cons(Y''0, cons(Y'''', L'''')))) -> REV2(Y0'', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y', cons(Y0'', cons(Y'''', L'''')))) -> REV2(Y', cons(Y0'', cons(Y'''', L'''')))
REV(cons(X'', cons(Y0'', cons(Y'''', L'''')))) -> REV2(X'', cons(Y0'', cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(nil)), rev2(Y0, rev(rev2(Y''', nil)))), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(nil))))))


Rules:


rev1(0, nil) -> 0
rev1(s(X), nil) -> s(X)
rev1(X, cons(Y, L)) -> rev1(Y, L)
rev(nil) -> nil
rev(cons(X, L)) -> cons(rev1(X, L), rev2(X, L))
rev2(X, nil) -> nil
rev2(X, cons(Y, L)) -> rev(cons(X, rev(rev2(Y, L))))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), rev2(Y0, rev(rev2(Y''', nil)))), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(rev2(Y''', nil)))))))
one new Dependency Pair is created:

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), rev2(Y0, rev(nil))), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(rev2(Y''', nil)))))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 6
Rw
             ...
               →DP Problem 42
Rewriting Transformation


Dependency Pairs:

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), rev2(Y0, rev(nil))), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(rev2(Y''', nil)))))))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(nil)), rev2(Y0, rev(rev2(Y''', nil)))), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(nil))))))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(nil)), rev2(Y0, rev(nil))), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(rev2(Y''', nil)))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(rev(cons(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(rev(cons(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev(cons(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(rev(cons(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(cons(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV(cons(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV(cons(X''', cons(Y''0, cons(Y'''', L'''')))) -> REV2(X''', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV2(X, cons(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0'', cons(Y''0, cons(Y'''', L'''')))) -> REV2(Y0'', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y', cons(Y0'', cons(Y'''', L'''')))) -> REV2(Y', cons(Y0'', cons(Y'''', L'''')))
REV(cons(X'', cons(Y0'', cons(Y'''', L'''')))) -> REV2(X'', cons(Y0'', cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(nil)), rev2(Y0, rev(rev2(Y''', nil)))), rev2(rev1(Y0, rev(nil)), rev2(Y0, rev(rev2(Y''', nil)))))))


Rules:


rev1(0, nil) -> 0
rev1(s(X), nil) -> s(X)
rev1(X, cons(Y, L)) -> rev1(Y, L)
rev(nil) -> nil
rev(cons(X, L)) -> cons(rev1(X, L), rev2(X, L))
rev2(X, nil) -> nil
rev2(X, cons(Y, L)) -> rev(cons(X, rev(rev2(Y, L))))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(cons(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
one new Dependency Pair is created:

REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, cons(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 6
Rw
             ...
               →DP Problem 43
Rewriting Transformation


Dependency Pairs:

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(nil)), rev2(Y0, rev(rev2(Y''', nil)))), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(nil))))))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(nil)), rev2(Y0, rev(rev2(Y''', nil)))), rev2(rev1(Y0, rev(nil)), rev2(Y0, rev(rev2(Y''', nil)))))))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(nil)), rev2(Y0, rev(nil))), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(rev2(Y''', nil)))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, cons(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(rev(cons(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(rev(cons(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev(cons(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(rev(cons(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV(cons(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV(cons(X''', cons(Y''0, cons(Y'''', L'''')))) -> REV2(X''', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV2(X, cons(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0'', cons(Y''0, cons(Y'''', L'''')))) -> REV2(Y0'', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y', cons(Y0'', cons(Y'''', L'''')))) -> REV2(Y', cons(Y0'', cons(Y'''', L'''')))
REV(cons(X'', cons(Y0'', cons(Y'''', L'''')))) -> REV2(X'', cons(Y0'', cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), rev2(Y0, rev(nil))), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(rev2(Y''', nil)))))))


Rules:


rev1(0, nil) -> 0
rev1(s(X), nil) -> s(X)
rev1(X, cons(Y, L)) -> rev1(Y, L)
rev(nil) -> nil
rev(cons(X, L)) -> cons(rev1(X, L), rev2(X, L))
rev2(X, nil) -> nil
rev2(X, cons(Y, L)) -> rev(cons(X, rev(rev2(Y, L))))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(nil)), rev2(Y0, rev(nil))), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(rev2(Y''', nil)))))))
one new Dependency Pair is created:

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), rev2(Y0, rev(nil))), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(rev2(Y''', nil)))))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 6
Rw
             ...
               →DP Problem 44
Rewriting Transformation


Dependency Pairs:

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), rev2(Y0, rev(nil))), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(rev2(Y''', nil)))))))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), rev2(Y0, rev(nil))), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(rev2(Y''', nil)))))))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(nil)), rev2(Y0, rev(rev2(Y''', nil)))), rev2(rev1(Y0, rev(nil)), rev2(Y0, rev(rev2(Y''', nil)))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, cons(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(rev(cons(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(rev(cons(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev(cons(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(rev(cons(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV(cons(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV(cons(X''', cons(Y''0, cons(Y'''', L'''')))) -> REV2(X''', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV2(X, cons(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0'', cons(Y''0, cons(Y'''', L'''')))) -> REV2(Y0'', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y', cons(Y0'', cons(Y'''', L'''')))) -> REV2(Y', cons(Y0'', cons(Y'''', L'''')))
REV(cons(X'', cons(Y0'', cons(Y'''', L'''')))) -> REV2(X'', cons(Y0'', cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(nil)), rev2(Y0, rev(rev2(Y''', nil)))), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(nil))))))


Rules:


rev1(0, nil) -> 0
rev1(s(X), nil) -> s(X)
rev1(X, cons(Y, L)) -> rev1(Y, L)
rev(nil) -> nil
rev(cons(X, L)) -> cons(rev1(X, L), rev2(X, L))
rev2(X, nil) -> nil
rev2(X, cons(Y, L)) -> rev(cons(X, rev(rev2(Y, L))))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(rev(cons(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
one new Dependency Pair is created:

REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(cons(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 6
Rw
             ...
               →DP Problem 45
Rewriting Transformation


Dependency Pairs:

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), rev2(Y0, rev(nil))), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(rev2(Y''', nil)))))))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(nil)), rev2(Y0, rev(rev2(Y''', nil)))), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(nil))))))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(nil)), rev2(Y0, rev(rev2(Y''', nil)))), rev2(rev1(Y0, rev(nil)), rev2(Y0, rev(rev2(Y''', nil)))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(cons(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, cons(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(rev(cons(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(rev(cons(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev(cons(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV(cons(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV(cons(X''', cons(Y''0, cons(Y'''', L'''')))) -> REV2(X''', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV2(X, cons(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0'', cons(Y''0, cons(Y'''', L'''')))) -> REV2(Y0'', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y', cons(Y0'', cons(Y'''', L'''')))) -> REV2(Y', cons(Y0'', cons(Y'''', L'''')))
REV(cons(X'', cons(Y0'', cons(Y'''', L'''')))) -> REV2(X'', cons(Y0'', cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), rev2(Y0, rev(nil))), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(rev2(Y''', nil)))))))


Rules:


rev1(0, nil) -> 0
rev1(s(X), nil) -> s(X)
rev1(X, cons(Y, L)) -> rev1(Y, L)
rev(nil) -> nil
rev(cons(X, L)) -> cons(rev1(X, L), rev2(X, L))
rev2(X, nil) -> nil
rev2(X, cons(Y, L)) -> rev(cons(X, rev(rev2(Y, L))))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(nil)), rev2(Y0, rev(rev2(Y''', nil)))), rev2(rev1(Y0, rev(nil)), rev2(Y0, rev(rev2(Y''', nil)))))))
one new Dependency Pair is created:

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), rev2(Y0, rev(rev2(Y''', nil)))), rev2(rev1(Y0, rev(nil)), rev2(Y0, rev(rev2(Y''', nil)))))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 6
Rw
             ...
               →DP Problem 46
Rewriting Transformation


Dependency Pairs:

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), rev2(Y0, rev(rev2(Y''', nil)))), rev2(rev1(Y0, rev(nil)), rev2(Y0, rev(rev2(Y''', nil)))))))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), rev2(Y0, rev(nil))), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(rev2(Y''', nil)))))))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(nil)), rev2(Y0, rev(rev2(Y''', nil)))), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(nil))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(cons(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, cons(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(rev(cons(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(rev(cons(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev(cons(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV(cons(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV(cons(X''', cons(Y''0, cons(Y'''', L'''')))) -> REV2(X''', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV2(X, cons(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0'', cons(Y''0, cons(Y'''', L'''')))) -> REV2(Y0'', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y', cons(Y0'', cons(Y'''', L'''')))) -> REV2(Y', cons(Y0'', cons(Y'''', L'''')))
REV(cons(X'', cons(Y0'', cons(Y'''', L'''')))) -> REV2(X'', cons(Y0'', cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), rev2(Y0, rev(nil))), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(rev2(Y''', nil)))))))


Rules:


rev1(0, nil) -> 0
rev1(s(X), nil) -> s(X)
rev1(X, cons(Y, L)) -> rev1(Y, L)
rev(nil) -> nil
rev(cons(X, L)) -> cons(rev1(X, L), rev2(X, L))
rev2(X, nil) -> nil
rev2(X, cons(Y, L)) -> rev(cons(X, rev(rev2(Y, L))))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(rev(cons(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev(cons(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
one new Dependency Pair is created:

REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(cons(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev(cons(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 6
Rw
             ...
               →DP Problem 47
Rewriting Transformation


Dependency Pairs:

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), rev2(Y0, rev(nil))), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(rev2(Y''', nil)))))))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), rev2(Y0, rev(nil))), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(rev2(Y''', nil)))))))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(nil)), rev2(Y0, rev(rev2(Y''', nil)))), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(nil))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(cons(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev(cons(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(cons(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, cons(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(rev(cons(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))))
REV(cons(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV(cons(X''', cons(Y''0, cons(Y'''', L'''')))) -> REV2(X''', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV2(X, cons(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0'', cons(Y''0, cons(Y'''', L'''')))) -> REV2(Y0'', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y', cons(Y0'', cons(Y'''', L'''')))) -> REV2(Y', cons(Y0'', cons(Y'''', L'''')))
REV(cons(X'', cons(Y0'', cons(Y'''', L'''')))) -> REV2(X'', cons(Y0'', cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), rev2(Y0, rev(rev2(Y''', nil)))), rev2(rev1(Y0, rev(nil)), rev2(Y0, rev(rev2(Y''', nil)))))))


Rules:


rev1(0, nil) -> 0
rev1(s(X), nil) -> s(X)
rev1(X, cons(Y, L)) -> rev1(Y, L)
rev(nil) -> nil
rev(cons(X, L)) -> cons(rev1(X, L), rev2(X, L))
rev2(X, nil) -> nil
rev2(X, cons(Y, L)) -> rev(cons(X, rev(rev2(Y, L))))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(nil)), rev2(Y0, rev(rev2(Y''', nil)))), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(nil))))))
one new Dependency Pair is created:

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), rev2(Y0, rev(rev2(Y''', nil)))), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(nil))))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 6
Rw
             ...
               →DP Problem 48
Rewriting Transformation


Dependency Pairs:

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), rev2(Y0, rev(rev2(Y''', nil)))), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(nil))))))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), rev2(Y0, rev(rev2(Y''', nil)))), rev2(rev1(Y0, rev(nil)), rev2(Y0, rev(rev2(Y''', nil)))))))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), rev2(Y0, rev(nil))), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(rev2(Y''', nil)))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(cons(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev(cons(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(cons(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, cons(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(rev(cons(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))))
REV(cons(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV(cons(X''', cons(Y''0, cons(Y'''', L'''')))) -> REV2(X''', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV2(X, cons(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0'', cons(Y''0, cons(Y'''', L'''')))) -> REV2(Y0'', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y', cons(Y0'', cons(Y'''', L'''')))) -> REV2(Y', cons(Y0'', cons(Y'''', L'''')))
REV(cons(X'', cons(Y0'', cons(Y'''', L'''')))) -> REV2(X'', cons(Y0'', cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), rev2(Y0, rev(nil))), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(rev2(Y''', nil)))))))


Rules:


rev1(0, nil) -> 0
rev1(s(X), nil) -> s(X)
rev1(X, cons(Y, L)) -> rev1(Y, L)
rev(nil) -> nil
rev(cons(X, L)) -> cons(rev1(X, L), rev2(X, L))
rev2(X, nil) -> nil
rev2(X, cons(Y, L)) -> rev(cons(X, rev(rev2(Y, L))))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(rev(cons(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))))
one new Dependency Pair is created:

REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(cons(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 6
Rw
             ...
               →DP Problem 49
Rewriting Transformation


Dependency Pairs:

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), rev2(Y0, rev(rev2(Y''', nil)))), rev2(rev1(Y0, rev(nil)), rev2(Y0, rev(rev2(Y''', nil)))))))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), rev2(Y0, rev(nil))), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(rev2(Y''', nil)))))))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), rev2(Y0, rev(nil))), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(rev2(Y''', nil)))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(cons(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(cons(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev(cons(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(cons(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, cons(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV(cons(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV(cons(X''', cons(Y''0, cons(Y'''', L'''')))) -> REV2(X''', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV2(X, cons(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0'', cons(Y''0, cons(Y'''', L'''')))) -> REV2(Y0'', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y', cons(Y0'', cons(Y'''', L'''')))) -> REV2(Y', cons(Y0'', cons(Y'''', L'''')))
REV(cons(X'', cons(Y0'', cons(Y'''', L'''')))) -> REV2(X'', cons(Y0'', cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), rev2(Y0, rev(rev2(Y''', nil)))), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(nil))))))


Rules:


rev1(0, nil) -> 0
rev1(s(X), nil) -> s(X)
rev1(X, cons(Y, L)) -> rev1(Y, L)
rev(nil) -> nil
rev(cons(X, L)) -> cons(rev1(X, L), rev2(X, L))
rev2(X, nil) -> nil
rev2(X, cons(Y, L)) -> rev(cons(X, rev(rev2(Y, L))))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), rev2(Y0, rev(nil))), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(rev2(Y''', nil)))))))
one new Dependency Pair is created:

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), rev2(Y0, nil)), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(rev2(Y''', nil)))))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 6
Rw
             ...
               →DP Problem 50
Rewriting Transformation


Dependency Pairs:

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), rev2(Y0, nil)), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(rev2(Y''', nil)))))))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), rev2(Y0, rev(rev2(Y''', nil)))), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(nil))))))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), rev2(Y0, rev(nil))), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(rev2(Y''', nil)))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(cons(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(cons(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev(cons(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(cons(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, cons(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV(cons(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV(cons(X''', cons(Y''0, cons(Y'''', L'''')))) -> REV2(X''', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV2(X, cons(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0'', cons(Y''0, cons(Y'''', L'''')))) -> REV2(Y0'', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y', cons(Y0'', cons(Y'''', L'''')))) -> REV2(Y', cons(Y0'', cons(Y'''', L'''')))
REV(cons(X'', cons(Y0'', cons(Y'''', L'''')))) -> REV2(X'', cons(Y0'', cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), rev2(Y0, rev(rev2(Y''', nil)))), rev2(rev1(Y0, rev(nil)), rev2(Y0, rev(rev2(Y''', nil)))))))


Rules:


rev1(0, nil) -> 0
rev1(s(X), nil) -> s(X)
rev1(X, cons(Y, L)) -> rev1(Y, L)
rev(nil) -> nil
rev(cons(X, L)) -> cons(rev1(X, L), rev2(X, L))
rev2(X, nil) -> nil
rev2(X, cons(Y, L)) -> rev(cons(X, rev(rev2(Y, L))))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, cons(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
one new Dependency Pair is created:

REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 6
Rw
             ...
               →DP Problem 51
Rewriting Transformation


Dependency Pairs:

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), rev2(Y0, rev(rev2(Y''', nil)))), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(nil))))))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), rev2(Y0, rev(rev2(Y''', nil)))), rev2(rev1(Y0, rev(nil)), rev2(Y0, rev(rev2(Y''', nil)))))))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), rev2(Y0, rev(nil))), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(rev2(Y''', nil)))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(cons(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(cons(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev(cons(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(cons(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV(cons(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV(cons(X''', cons(Y''0, cons(Y'''', L'''')))) -> REV2(X''', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV2(X, cons(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0'', cons(Y''0, cons(Y'''', L'''')))) -> REV2(Y0'', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y', cons(Y0'', cons(Y'''', L'''')))) -> REV2(Y', cons(Y0'', cons(Y'''', L'''')))
REV(cons(X'', cons(Y0'', cons(Y'''', L'''')))) -> REV2(X'', cons(Y0'', cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), rev2(Y0, nil)), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(rev2(Y''', nil)))))))


Rules:


rev1(0, nil) -> 0
rev1(s(X), nil) -> s(X)
rev1(X, cons(Y, L)) -> rev1(Y, L)
rev(nil) -> nil
rev(cons(X, L)) -> cons(rev1(X, L), rev2(X, L))
rev2(X, nil) -> nil
rev2(X, cons(Y, L)) -> rev(cons(X, rev(rev2(Y, L))))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), rev2(Y0, rev(nil))), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(rev2(Y''', nil)))))))
one new Dependency Pair is created:

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), rev2(Y0, nil)), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(rev2(Y''', nil)))))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 6
Rw
             ...
               →DP Problem 52
Rewriting Transformation


Dependency Pairs:

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), rev2(Y0, nil)), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(rev2(Y''', nil)))))))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), rev2(Y0, nil)), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(rev2(Y''', nil)))))))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), rev2(Y0, rev(rev2(Y''', nil)))), rev2(rev1(Y0, rev(nil)), rev2(Y0, rev(rev2(Y''', nil)))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(cons(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(cons(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev(cons(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(cons(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV(cons(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV(cons(X''', cons(Y''0, cons(Y'''', L'''')))) -> REV2(X''', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV2(X, cons(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0'', cons(Y''0, cons(Y'''', L'''')))) -> REV2(Y0'', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y', cons(Y0'', cons(Y'''', L'''')))) -> REV2(Y', cons(Y0'', cons(Y'''', L'''')))
REV(cons(X'', cons(Y0'', cons(Y'''', L'''')))) -> REV2(X'', cons(Y0'', cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), rev2(Y0, rev(rev2(Y''', nil)))), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(nil))))))


Rules:


rev1(0, nil) -> 0
rev1(s(X), nil) -> s(X)
rev1(X, cons(Y, L)) -> rev1(Y, L)
rev(nil) -> nil
rev(cons(X, L)) -> cons(rev1(X, L), rev2(X, L))
rev2(X, nil) -> nil
rev2(X, cons(Y, L)) -> rev(cons(X, rev(rev2(Y, L))))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(cons(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
one new Dependency Pair is created:

REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, cons(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 6
Rw
             ...
               →DP Problem 53
Rewriting Transformation


Dependency Pairs:

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), rev2(Y0, nil)), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(rev2(Y''', nil)))))))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), rev2(Y0, rev(rev2(Y''', nil)))), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(nil))))))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), rev2(Y0, rev(rev2(Y''', nil)))), rev2(rev1(Y0, rev(nil)), rev2(Y0, rev(rev2(Y''', nil)))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, cons(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(cons(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(cons(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev(cons(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV(cons(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV(cons(X''', cons(Y''0, cons(Y'''', L'''')))) -> REV2(X''', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV2(X, cons(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0'', cons(Y''0, cons(Y'''', L'''')))) -> REV2(Y0'', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y', cons(Y0'', cons(Y'''', L'''')))) -> REV2(Y', cons(Y0'', cons(Y'''', L'''')))
REV(cons(X'', cons(Y0'', cons(Y'''', L'''')))) -> REV2(X'', cons(Y0'', cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), rev2(Y0, nil)), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(rev2(Y''', nil)))))))


Rules:


rev1(0, nil) -> 0
rev1(s(X), nil) -> s(X)
rev1(X, cons(Y, L)) -> rev1(Y, L)
rev(nil) -> nil
rev(cons(X, L)) -> cons(rev1(X, L), rev2(X, L))
rev2(X, nil) -> nil
rev2(X, cons(Y, L)) -> rev(cons(X, rev(rev2(Y, L))))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), rev2(Y0, rev(rev2(Y''', nil)))), rev2(rev1(Y0, rev(nil)), rev2(Y0, rev(rev2(Y''', nil)))))))
one new Dependency Pair is created:

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), rev2(Y0, rev(nil))), rev2(rev1(Y0, rev(nil)), rev2(Y0, rev(rev2(Y''', nil)))))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 6
Rw
             ...
               →DP Problem 54
Rewriting Transformation


Dependency Pairs:

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), rev2(Y0, rev(nil))), rev2(rev1(Y0, rev(nil)), rev2(Y0, rev(rev2(Y''', nil)))))))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), rev2(Y0, nil)), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(rev2(Y''', nil)))))))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), rev2(Y0, rev(rev2(Y''', nil)))), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(nil))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, cons(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(cons(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(cons(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev(cons(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV(cons(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV(cons(X''', cons(Y''0, cons(Y'''', L'''')))) -> REV2(X''', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV2(X, cons(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0'', cons(Y''0, cons(Y'''', L'''')))) -> REV2(Y0'', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y', cons(Y0'', cons(Y'''', L'''')))) -> REV2(Y', cons(Y0'', cons(Y'''', L'''')))
REV(cons(X'', cons(Y0'', cons(Y'''', L'''')))) -> REV2(X'', cons(Y0'', cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), rev2(Y0, nil)), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(rev2(Y''', nil)))))))


Rules:


rev1(0, nil) -> 0
rev1(s(X), nil) -> s(X)
rev1(X, cons(Y, L)) -> rev1(Y, L)
rev(nil) -> nil
rev(cons(X, L)) -> cons(rev1(X, L), rev2(X, L))
rev2(X, nil) -> nil
rev2(X, cons(Y, L)) -> rev(cons(X, rev(rev2(Y, L))))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(cons(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev(cons(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
one new Dependency Pair is created:

REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, cons(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev(cons(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 6
Rw
             ...
               →DP Problem 55
Rewriting Transformation


Dependency Pairs:

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), rev2(Y0, nil)), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(rev2(Y''', nil)))))))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), rev2(Y0, nil)), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(rev2(Y''', nil)))))))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), rev2(Y0, rev(rev2(Y''', nil)))), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(nil))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, cons(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev(cons(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, cons(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(cons(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))))
REV(cons(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV(cons(X''', cons(Y''0, cons(Y'''', L'''')))) -> REV2(X''', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV2(X, cons(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0'', cons(Y''0, cons(Y'''', L'''')))) -> REV2(Y0'', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y', cons(Y0'', cons(Y'''', L'''')))) -> REV2(Y', cons(Y0'', cons(Y'''', L'''')))
REV(cons(X'', cons(Y0'', cons(Y'''', L'''')))) -> REV2(X'', cons(Y0'', cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), rev2(Y0, rev(nil))), rev2(rev1(Y0, rev(nil)), rev2(Y0, rev(rev2(Y''', nil)))))))


Rules:


rev1(0, nil) -> 0
rev1(s(X), nil) -> s(X)
rev1(X, cons(Y, L)) -> rev1(Y, L)
rev(nil) -> nil
rev(cons(X, L)) -> cons(rev1(X, L), rev2(X, L))
rev2(X, nil) -> nil
rev2(X, cons(Y, L)) -> rev(cons(X, rev(rev2(Y, L))))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), rev2(Y0, rev(rev2(Y''', nil)))), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(nil))))))
one new Dependency Pair is created:

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), rev2(Y0, rev(nil))), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(nil))))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 6
Rw
             ...
               →DP Problem 56
Rewriting Transformation


Dependency Pairs:

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), rev2(Y0, rev(nil))), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(nil))))))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), rev2(Y0, rev(nil))), rev2(rev1(Y0, rev(nil)), rev2(Y0, rev(rev2(Y''', nil)))))))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), rev2(Y0, nil)), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(rev2(Y''', nil)))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, cons(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev(cons(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, cons(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(cons(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))))
REV(cons(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV(cons(X''', cons(Y''0, cons(Y'''', L'''')))) -> REV2(X''', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV2(X, cons(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0'', cons(Y''0, cons(Y'''', L'''')))) -> REV2(Y0'', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y', cons(Y0'', cons(Y'''', L'''')))) -> REV2(Y', cons(Y0'', cons(Y'''', L'''')))
REV(cons(X'', cons(Y0'', cons(Y'''', L'''')))) -> REV2(X'', cons(Y0'', cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), rev2(Y0, nil)), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(rev2(Y''', nil)))))))


Rules:


rev1(0, nil) -> 0
rev1(s(X), nil) -> s(X)
rev1(X, cons(Y, L)) -> rev1(Y, L)
rev(nil) -> nil
rev(cons(X, L)) -> cons(rev1(X, L), rev2(X, L))
rev2(X, nil) -> nil
rev2(X, cons(Y, L)) -> rev(cons(X, rev(rev2(Y, L))))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, rev(cons(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))))
one new Dependency Pair is created:

REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, cons(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 6
Rw
             ...
               →DP Problem 57
Rewriting Transformation


Dependency Pairs:

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), rev2(Y0, rev(nil))), rev2(rev1(Y0, rev(nil)), rev2(Y0, rev(rev2(Y''', nil)))))))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), rev2(Y0, nil)), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(rev2(Y''', nil)))))))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), rev2(Y0, nil)), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(rev2(Y''', nil)))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, cons(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, cons(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev(cons(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, cons(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV(cons(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV(cons(X''', cons(Y''0, cons(Y'''', L'''')))) -> REV2(X''', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV2(X, cons(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0'', cons(Y''0, cons(Y'''', L'''')))) -> REV2(Y0'', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y', cons(Y0'', cons(Y'''', L'''')))) -> REV2(Y', cons(Y0'', cons(Y'''', L'''')))
REV(cons(X'', cons(Y0'', cons(Y'''', L'''')))) -> REV2(X'', cons(Y0'', cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), rev2(Y0, rev(nil))), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(nil))))))


Rules:


rev1(0, nil) -> 0
rev1(s(X), nil) -> s(X)
rev1(X, cons(Y, L)) -> rev1(Y, L)
rev(nil) -> nil
rev(cons(X, L)) -> cons(rev1(X, L), rev2(X, L))
rev2(X, nil) -> nil
rev2(X, cons(Y, L)) -> rev(cons(X, rev(rev2(Y, L))))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), rev2(Y0, nil)), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(rev2(Y''', nil)))))))
one new Dependency Pair is created:

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(rev2(Y''', nil)))))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 6
Rw
             ...
               →DP Problem 58
Rewriting Transformation


Dependency Pairs:

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(rev2(Y''', nil)))))))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), rev2(Y0, rev(nil))), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(nil))))))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), rev2(Y0, nil)), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(rev2(Y''', nil)))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, cons(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, cons(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev(cons(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, cons(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV(cons(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV(cons(X''', cons(Y''0, cons(Y'''', L'''')))) -> REV2(X''', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV2(X, cons(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0'', cons(Y''0, cons(Y'''', L'''')))) -> REV2(Y0'', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y', cons(Y0'', cons(Y'''', L'''')))) -> REV2(Y', cons(Y0'', cons(Y'''', L'''')))
REV(cons(X'', cons(Y0'', cons(Y'''', L'''')))) -> REV2(X'', cons(Y0'', cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), rev2(Y0, rev(nil))), rev2(rev1(Y0, rev(nil)), rev2(Y0, rev(rev2(Y''', nil)))))))


Rules:


rev1(0, nil) -> 0
rev1(s(X), nil) -> s(X)
rev1(X, cons(Y, L)) -> rev1(Y, L)
rev(nil) -> nil
rev(cons(X, L)) -> cons(rev1(X, L), rev2(X, L))
rev2(X, nil) -> nil
rev2(X, cons(Y, L)) -> rev(cons(X, rev(rev2(Y, L))))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), rev2(Y0, nil)), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(rev2(Y''', nil)))))))
one new Dependency Pair is created:

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(rev2(Y''', nil)))))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 6
Rw
             ...
               →DP Problem 59
Rewriting Transformation


Dependency Pairs:

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(rev2(Y''', nil)))))))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), rev2(Y0, rev(nil))), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(nil))))))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), rev2(Y0, rev(nil))), rev2(rev1(Y0, rev(nil)), rev2(Y0, rev(rev2(Y''', nil)))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, cons(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, cons(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev(cons(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, cons(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV(cons(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV(cons(X''', cons(Y''0, cons(Y'''', L'''')))) -> REV2(X''', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV2(X, cons(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0'', cons(Y''0, cons(Y'''', L'''')))) -> REV2(Y0'', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y', cons(Y0'', cons(Y'''', L'''')))) -> REV2(Y', cons(Y0'', cons(Y'''', L'''')))
REV(cons(X'', cons(Y0'', cons(Y'''', L'''')))) -> REV2(X'', cons(Y0'', cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(rev2(Y''', nil)))))))


Rules:


rev1(0, nil) -> 0
rev1(s(X), nil) -> s(X)
rev1(X, cons(Y, L)) -> rev1(Y, L)
rev(nil) -> nil
rev(cons(X, L)) -> cons(rev1(X, L), rev2(X, L))
rev2(X, nil) -> nil
rev2(X, cons(Y, L)) -> rev(cons(X, rev(rev2(Y, L))))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, cons(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
one new Dependency Pair is created:

REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 6
Rw
             ...
               →DP Problem 60
Rewriting Transformation


Dependency Pairs:

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(rev2(Y''', nil)))))))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), rev2(Y0, rev(nil))), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(nil))))))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), rev2(Y0, rev(nil))), rev2(rev1(Y0, rev(nil)), rev2(Y0, rev(rev2(Y''', nil)))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, cons(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, cons(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev(cons(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV(cons(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV(cons(X''', cons(Y''0, cons(Y'''', L'''')))) -> REV2(X''', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV2(X, cons(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0'', cons(Y''0, cons(Y'''', L'''')))) -> REV2(Y0'', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y', cons(Y0'', cons(Y'''', L'''')))) -> REV2(Y', cons(Y0'', cons(Y'''', L'''')))
REV(cons(X'', cons(Y0'', cons(Y'''', L'''')))) -> REV2(X'', cons(Y0'', cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(rev2(Y''', nil)))))))


Rules:


rev1(0, nil) -> 0
rev1(s(X), nil) -> s(X)
rev1(X, cons(Y, L)) -> rev1(Y, L)
rev(nil) -> nil
rev(cons(X, L)) -> cons(rev1(X, L), rev2(X, L))
rev2(X, nil) -> nil
rev2(X, cons(Y, L)) -> rev(cons(X, rev(rev2(Y, L))))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), rev2(Y0, rev(nil))), rev2(rev1(Y0, rev(nil)), rev2(Y0, rev(rev2(Y''', nil)))))))
one new Dependency Pair is created:

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), rev2(Y0, nil)), rev2(rev1(Y0, rev(nil)), rev2(Y0, rev(rev2(Y''', nil)))))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 6
Rw
             ...
               →DP Problem 61
Rewriting Transformation


Dependency Pairs:

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), rev2(Y0, nil)), rev2(rev1(Y0, rev(nil)), rev2(Y0, rev(rev2(Y''', nil)))))))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(rev2(Y''', nil)))))))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), rev2(Y0, rev(nil))), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(nil))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, cons(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, cons(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev(cons(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV(cons(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV(cons(X''', cons(Y''0, cons(Y'''', L'''')))) -> REV2(X''', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV2(X, cons(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0'', cons(Y''0, cons(Y'''', L'''')))) -> REV2(Y0'', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y', cons(Y0'', cons(Y'''', L'''')))) -> REV2(Y', cons(Y0'', cons(Y'''', L'''')))
REV(cons(X'', cons(Y0'', cons(Y'''', L'''')))) -> REV2(X'', cons(Y0'', cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(rev2(Y''', nil)))))))


Rules:


rev1(0, nil) -> 0
rev1(s(X), nil) -> s(X)
rev1(X, cons(Y, L)) -> rev1(Y, L)
rev(nil) -> nil
rev(cons(X, L)) -> cons(rev1(X, L), rev2(X, L))
rev2(X, nil) -> nil
rev2(X, cons(Y, L)) -> rev(cons(X, rev(rev2(Y, L))))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, cons(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev(cons(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
one new Dependency Pair is created:

REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev(cons(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 6
Rw
             ...
               →DP Problem 62
Rewriting Transformation


Dependency Pairs:

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(rev2(Y''', nil)))))))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(rev2(Y''', nil)))))))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), rev2(Y0, rev(nil))), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(nil))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev(cons(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, cons(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV(cons(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV(cons(X''', cons(Y''0, cons(Y'''', L'''')))) -> REV2(X''', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV2(X, cons(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0'', cons(Y''0, cons(Y'''', L'''')))) -> REV2(Y0'', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y', cons(Y0'', cons(Y'''', L'''')))) -> REV2(Y', cons(Y0'', cons(Y'''', L'''')))
REV(cons(X'', cons(Y0'', cons(Y'''', L'''')))) -> REV2(X'', cons(Y0'', cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), rev2(Y0, nil)), rev2(rev1(Y0, rev(nil)), rev2(Y0, rev(rev2(Y''', nil)))))))


Rules:


rev1(0, nil) -> 0
rev1(s(X), nil) -> s(X)
rev1(X, cons(Y, L)) -> rev1(Y, L)
rev(nil) -> nil
rev(cons(X, L)) -> cons(rev1(X, L), rev2(X, L))
rev2(X, nil) -> nil
rev2(X, cons(Y, L)) -> rev(cons(X, rev(rev2(Y, L))))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), rev2(Y0, rev(nil))), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(nil))))))
one new Dependency Pair is created:

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), rev2(Y0, nil)), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(nil))))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 6
Rw
             ...
               →DP Problem 63
Rewriting Transformation


Dependency Pairs:

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), rev2(Y0, nil)), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(nil))))))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), rev2(Y0, nil)), rev2(rev1(Y0, rev(nil)), rev2(Y0, rev(rev2(Y''', nil)))))))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(rev2(Y''', nil)))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev(cons(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, cons(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV(cons(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV(cons(X''', cons(Y''0, cons(Y'''', L'''')))) -> REV2(X''', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV2(X, cons(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0'', cons(Y''0, cons(Y'''', L'''')))) -> REV2(Y0'', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y', cons(Y0'', cons(Y'''', L'''')))) -> REV2(Y', cons(Y0'', cons(Y'''', L'''')))
REV(cons(X'', cons(Y0'', cons(Y'''', L'''')))) -> REV2(X'', cons(Y0'', cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(rev2(Y''', nil)))))))


Rules:


rev1(0, nil) -> 0
rev1(s(X), nil) -> s(X)
rev1(X, cons(Y, L)) -> rev1(Y, L)
rev(nil) -> nil
rev(cons(X, L)) -> cons(rev1(X, L), rev2(X, L))
rev2(X, nil) -> nil
rev2(X, cons(Y, L)) -> rev(cons(X, rev(rev2(Y, L))))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(Y0, cons(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))))
one new Dependency Pair is created:

REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 6
Rw
             ...
               →DP Problem 64
Rewriting Transformation


Dependency Pairs:

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), rev2(Y0, nil)), rev2(rev1(Y0, rev(nil)), rev2(Y0, rev(rev2(Y''', nil)))))))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(rev2(Y''', nil)))))))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(rev2(Y''', nil)))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev(cons(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV(cons(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV(cons(X''', cons(Y''0, cons(Y'''', L'''')))) -> REV2(X''', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV2(X, cons(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0'', cons(Y''0, cons(Y'''', L'''')))) -> REV2(Y0'', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y', cons(Y0'', cons(Y'''', L'''')))) -> REV2(Y', cons(Y0'', cons(Y'''', L'''')))
REV(cons(X'', cons(Y0'', cons(Y'''', L'''')))) -> REV2(X'', cons(Y0'', cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), rev2(Y0, nil)), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(nil))))))


Rules:


rev1(0, nil) -> 0
rev1(s(X), nil) -> s(X)
rev1(X, cons(Y, L)) -> rev1(Y, L)
rev(nil) -> nil
rev(cons(X, L)) -> cons(rev1(X, L), rev2(X, L))
rev2(X, nil) -> nil
rev2(X, cons(Y, L)) -> rev(cons(X, rev(rev2(Y, L))))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(rev2(Y''', nil)))))))
one new Dependency Pair is created:

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, rev(nil)), rev2(Y0, rev(rev2(Y''', nil)))))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 6
Rw
             ...
               →DP Problem 65
Rewriting Transformation


Dependency Pairs:

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, rev(nil)), rev2(Y0, rev(rev2(Y''', nil)))))))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), rev2(Y0, nil)), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(nil))))))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(rev2(Y''', nil)))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev(cons(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV(cons(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV(cons(X''', cons(Y''0, cons(Y'''', L'''')))) -> REV2(X''', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV2(X, cons(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0'', cons(Y''0, cons(Y'''', L'''')))) -> REV2(Y0'', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y', cons(Y0'', cons(Y'''', L'''')))) -> REV2(Y', cons(Y0'', cons(Y'''', L'''')))
REV(cons(X'', cons(Y0'', cons(Y'''', L'''')))) -> REV2(X'', cons(Y0'', cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), rev2(Y0, nil)), rev2(rev1(Y0, rev(nil)), rev2(Y0, rev(rev2(Y''', nil)))))))


Rules:


rev1(0, nil) -> 0
rev1(s(X), nil) -> s(X)
rev1(X, cons(Y, L)) -> rev1(Y, L)
rev(nil) -> nil
rev(cons(X, L)) -> cons(rev1(X, L), rev2(X, L))
rev2(X, nil) -> nil
rev2(X, cons(Y, L)) -> rev(cons(X, rev(rev2(Y, L))))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(rev2(Y''', nil)))))))
one new Dependency Pair is created:

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, rev(nil)), rev2(Y0, rev(rev2(Y''', nil)))))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 6
Rw
             ...
               →DP Problem 66
Rewriting Transformation


Dependency Pairs:

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, rev(nil)), rev2(Y0, rev(rev2(Y''', nil)))))))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), rev2(Y0, nil)), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(nil))))))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), rev2(Y0, nil)), rev2(rev1(Y0, rev(nil)), rev2(Y0, rev(rev2(Y''', nil)))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev(cons(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV(cons(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV(cons(X''', cons(Y''0, cons(Y'''', L'''')))) -> REV2(X''', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV2(X, cons(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0'', cons(Y''0, cons(Y'''', L'''')))) -> REV2(Y0'', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y', cons(Y0'', cons(Y'''', L'''')))) -> REV2(Y', cons(Y0'', cons(Y'''', L'''')))
REV(cons(X'', cons(Y0'', cons(Y'''', L'''')))) -> REV2(X'', cons(Y0'', cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, rev(nil)), rev2(Y0, rev(rev2(Y''', nil)))))))


Rules:


rev1(0, nil) -> 0
rev1(s(X), nil) -> s(X)
rev1(X, cons(Y, L)) -> rev1(Y, L)
rev(nil) -> nil
rev(cons(X, L)) -> cons(rev1(X, L), rev2(X, L))
rev2(X, nil) -> nil
rev2(X, cons(Y, L)) -> rev(cons(X, rev(rev2(Y, L))))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), rev2(Y0, nil)), rev2(rev1(Y0, rev(nil)), rev2(Y0, rev(rev2(Y''', nil)))))))
one new Dependency Pair is created:

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, rev(nil)), rev2(Y0, rev(rev2(Y''', nil)))))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 6
Rw
             ...
               →DP Problem 67
Rewriting Transformation


Dependency Pairs:

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, rev(nil)), rev2(Y0, rev(rev2(Y''', nil)))))))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, rev(nil)), rev2(Y0, rev(rev2(Y''', nil)))))))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), rev2(Y0, nil)), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(nil))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev(cons(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV(cons(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV(cons(X''', cons(Y''0, cons(Y'''', L'''')))) -> REV2(X''', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV2(X, cons(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0'', cons(Y''0, cons(Y'''', L'''')))) -> REV2(Y0'', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y', cons(Y0'', cons(Y'''', L'''')))) -> REV2(Y', cons(Y0'', cons(Y'''', L'''')))
REV(cons(X'', cons(Y0'', cons(Y'''', L'''')))) -> REV2(X'', cons(Y0'', cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, rev(nil)), rev2(Y0, rev(rev2(Y''', nil)))))))


Rules:


rev1(0, nil) -> 0
rev1(s(X), nil) -> s(X)
rev1(X, cons(Y, L)) -> rev1(Y, L)
rev(nil) -> nil
rev(cons(X, L)) -> cons(rev1(X, L), rev2(X, L))
rev2(X, nil) -> nil
rev2(X, cons(Y, L)) -> rev(cons(X, rev(rev2(Y, L))))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), rev2(Y0, nil)), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(nil))))))
one new Dependency Pair is created:

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(nil))))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 6
Rw
             ...
               →DP Problem 68
Rewriting Transformation


Dependency Pairs:

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(nil))))))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, rev(nil)), rev2(Y0, rev(rev2(Y''', nil)))))))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, rev(nil)), rev2(Y0, rev(rev2(Y''', nil)))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev(cons(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV(cons(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV(cons(X''', cons(Y''0, cons(Y'''', L'''')))) -> REV2(X''', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV2(X, cons(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0'', cons(Y''0, cons(Y'''', L'''')))) -> REV2(Y0'', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y', cons(Y0'', cons(Y'''', L'''')))) -> REV2(Y', cons(Y0'', cons(Y'''', L'''')))
REV(cons(X'', cons(Y0'', cons(Y'''', L'''')))) -> REV2(X'', cons(Y0'', cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, rev(nil)), rev2(Y0, rev(rev2(Y''', nil)))))))


Rules:


rev1(0, nil) -> 0
rev1(s(X), nil) -> s(X)
rev1(X, cons(Y, L)) -> rev1(Y, L)
rev(nil) -> nil
rev(cons(X, L)) -> cons(rev1(X, L), rev2(X, L))
rev2(X, nil) -> nil
rev2(X, cons(Y, L)) -> rev(cons(X, rev(rev2(Y, L))))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, rev(nil)), rev2(Y0, rev(rev2(Y''', nil)))))))
one new Dependency Pair is created:

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, nil), rev2(Y0, rev(rev2(Y''', nil)))))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 6
Rw
             ...
               →DP Problem 69
Rewriting Transformation


Dependency Pairs:

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, nil), rev2(Y0, rev(rev2(Y''', nil)))))))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, rev(nil)), rev2(Y0, rev(rev2(Y''', nil)))))))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, rev(nil)), rev2(Y0, rev(rev2(Y''', nil)))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev(cons(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV(cons(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV(cons(X''', cons(Y''0, cons(Y'''', L'''')))) -> REV2(X''', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV2(X, cons(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0'', cons(Y''0, cons(Y'''', L'''')))) -> REV2(Y0'', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y', cons(Y0'', cons(Y'''', L'''')))) -> REV2(Y', cons(Y0'', cons(Y'''', L'''')))
REV(cons(X'', cons(Y0'', cons(Y'''', L'''')))) -> REV2(X'', cons(Y0'', cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(nil))))))


Rules:


rev1(0, nil) -> 0
rev1(s(X), nil) -> s(X)
rev1(X, cons(Y, L)) -> rev1(Y, L)
rev(nil) -> nil
rev(cons(X, L)) -> cons(rev1(X, L), rev2(X, L))
rev2(X, nil) -> nil
rev2(X, cons(Y, L)) -> rev(cons(X, rev(rev2(Y, L))))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, rev(nil)), rev2(Y0, rev(rev2(Y''', nil)))))))
one new Dependency Pair is created:

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, nil), rev2(Y0, rev(rev2(Y''', nil)))))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 6
Rw
             ...
               →DP Problem 70
Rewriting Transformation


Dependency Pairs:

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, nil), rev2(Y0, rev(rev2(Y''', nil)))))))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(nil))))))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, rev(nil)), rev2(Y0, rev(rev2(Y''', nil)))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev(cons(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV(cons(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV(cons(X''', cons(Y''0, cons(Y'''', L'''')))) -> REV2(X''', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV2(X, cons(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0'', cons(Y''0, cons(Y'''', L'''')))) -> REV2(Y0'', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y', cons(Y0'', cons(Y'''', L'''')))) -> REV2(Y', cons(Y0'', cons(Y'''', L'''')))
REV(cons(X'', cons(Y0'', cons(Y'''', L'''')))) -> REV2(X'', cons(Y0'', cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, nil), rev2(Y0, rev(rev2(Y''', nil)))))))


Rules:


rev1(0, nil) -> 0
rev1(s(X), nil) -> s(X)
rev1(X, cons(Y, L)) -> rev1(Y, L)
rev(nil) -> nil
rev(cons(X, L)) -> cons(rev1(X, L), rev2(X, L))
rev2(X, nil) -> nil
rev2(X, cons(Y, L)) -> rev(cons(X, rev(rev2(Y, L))))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, rev(nil)), rev2(Y0, rev(rev2(Y''', nil)))))))
one new Dependency Pair is created:

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, nil), rev2(Y0, rev(rev2(Y''', nil)))))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 6
Rw
             ...
               →DP Problem 71
Rewriting Transformation


Dependency Pairs:

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, nil), rev2(Y0, rev(rev2(Y''', nil)))))))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, nil), rev2(Y0, rev(rev2(Y''', nil)))))))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(nil))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev(cons(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV(cons(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV(cons(X''', cons(Y''0, cons(Y'''', L'''')))) -> REV2(X''', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV2(X, cons(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0'', cons(Y''0, cons(Y'''', L'''')))) -> REV2(Y0'', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y', cons(Y0'', cons(Y'''', L'''')))) -> REV2(Y', cons(Y0'', cons(Y'''', L'''')))
REV(cons(X'', cons(Y0'', cons(Y'''', L'''')))) -> REV2(X'', cons(Y0'', cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, nil), rev2(Y0, rev(rev2(Y''', nil)))))))


Rules:


rev1(0, nil) -> 0
rev1(s(X), nil) -> s(X)
rev1(X, cons(Y, L)) -> rev1(Y, L)
rev(nil) -> nil
rev(cons(X, L)) -> cons(rev1(X, L), rev2(X, L))
rev2(X, nil) -> nil
rev2(X, cons(Y, L)) -> rev(cons(X, rev(rev2(Y, L))))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, rev(rev2(Y''', nil))), rev2(Y0, rev(nil))))))
one new Dependency Pair is created:

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, rev(nil)), rev2(Y0, rev(nil))))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 6
Rw
             ...
               →DP Problem 72
Rewriting Transformation


Dependency Pairs:

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, rev(nil)), rev2(Y0, rev(nil))))))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, nil), rev2(Y0, rev(rev2(Y''', nil)))))))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, nil), rev2(Y0, rev(rev2(Y''', nil)))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev(cons(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV(cons(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV(cons(X''', cons(Y''0, cons(Y'''', L'''')))) -> REV2(X''', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV2(X, cons(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0'', cons(Y''0, cons(Y'''', L'''')))) -> REV2(Y0'', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y', cons(Y0'', cons(Y'''', L'''')))) -> REV2(Y', cons(Y0'', cons(Y'''', L'''')))
REV(cons(X'', cons(Y0'', cons(Y'''', L'''')))) -> REV2(X'', cons(Y0'', cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, nil), rev2(Y0, rev(rev2(Y''', nil)))))))


Rules:


rev1(0, nil) -> 0
rev1(s(X), nil) -> s(X)
rev1(X, cons(Y, L)) -> rev1(Y, L)
rev(nil) -> nil
rev(cons(X, L)) -> cons(rev1(X, L), rev2(X, L))
rev2(X, nil) -> nil
rev2(X, cons(Y, L)) -> rev(cons(X, rev(rev2(Y, L))))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, nil), rev2(Y0, rev(rev2(Y''', nil)))))))
one new Dependency Pair is created:

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, nil), rev2(Y0, rev(nil))))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 6
Rw
             ...
               →DP Problem 73
Rewriting Transformation


Dependency Pairs:

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, nil), rev2(Y0, rev(nil))))))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, nil), rev2(Y0, rev(rev2(Y''', nil)))))))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, nil), rev2(Y0, rev(rev2(Y''', nil)))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev(cons(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV(cons(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV(cons(X''', cons(Y''0, cons(Y'''', L'''')))) -> REV2(X''', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV2(X, cons(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0'', cons(Y''0, cons(Y'''', L'''')))) -> REV2(Y0'', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y', cons(Y0'', cons(Y'''', L'''')))) -> REV2(Y', cons(Y0'', cons(Y'''', L'''')))
REV(cons(X'', cons(Y0'', cons(Y'''', L'''')))) -> REV2(X'', cons(Y0'', cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, rev(nil)), rev2(Y0, rev(nil))))))


Rules:


rev1(0, nil) -> 0
rev1(s(X), nil) -> s(X)
rev1(X, cons(Y, L)) -> rev1(Y, L)
rev(nil) -> nil
rev(cons(X, L)) -> cons(rev1(X, L), rev2(X, L))
rev2(X, nil) -> nil
rev2(X, cons(Y, L)) -> rev(cons(X, rev(rev2(Y, L))))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, nil), rev2(Y0, rev(rev2(Y''', nil)))))))
one new Dependency Pair is created:

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, nil), rev2(Y0, rev(nil))))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 6
Rw
             ...
               →DP Problem 74
Rewriting Transformation


Dependency Pairs:

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, nil), rev2(Y0, rev(nil))))))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, rev(nil)), rev2(Y0, rev(nil))))))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, nil), rev2(Y0, rev(rev2(Y''', nil)))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev(cons(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV(cons(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV(cons(X''', cons(Y''0, cons(Y'''', L'''')))) -> REV2(X''', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV2(X, cons(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0'', cons(Y''0, cons(Y'''', L'''')))) -> REV2(Y0'', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y', cons(Y0'', cons(Y'''', L'''')))) -> REV2(Y', cons(Y0'', cons(Y'''', L'''')))
REV(cons(X'', cons(Y0'', cons(Y'''', L'''')))) -> REV2(X'', cons(Y0'', cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, nil), rev2(Y0, rev(nil))))))


Rules:


rev1(0, nil) -> 0
rev1(s(X), nil) -> s(X)
rev1(X, cons(Y, L)) -> rev1(Y, L)
rev(nil) -> nil
rev(cons(X, L)) -> cons(rev1(X, L), rev2(X, L))
rev2(X, nil) -> nil
rev2(X, cons(Y, L)) -> rev(cons(X, rev(rev2(Y, L))))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, nil), rev2(Y0, rev(rev2(Y''', nil)))))))
one new Dependency Pair is created:

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, nil), rev2(Y0, rev(nil))))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 6
Rw
             ...
               →DP Problem 75
Rewriting Transformation


Dependency Pairs:

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, nil), rev2(Y0, rev(nil))))))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, nil), rev2(Y0, rev(nil))))))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, rev(nil)), rev2(Y0, rev(nil))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev(cons(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV(cons(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV(cons(X''', cons(Y''0, cons(Y'''', L'''')))) -> REV2(X''', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV2(X, cons(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0'', cons(Y''0, cons(Y'''', L'''')))) -> REV2(Y0'', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y', cons(Y0'', cons(Y'''', L'''')))) -> REV2(Y', cons(Y0'', cons(Y'''', L'''')))
REV(cons(X'', cons(Y0'', cons(Y'''', L'''')))) -> REV2(X'', cons(Y0'', cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, nil), rev2(Y0, rev(nil))))))


Rules:


rev1(0, nil) -> 0
rev1(s(X), nil) -> s(X)
rev1(X, cons(Y, L)) -> rev1(Y, L)
rev(nil) -> nil
rev(cons(X, L)) -> cons(rev1(X, L), rev2(X, L))
rev2(X, nil) -> nil
rev2(X, cons(Y, L)) -> rev(cons(X, rev(rev2(Y, L))))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, rev(nil)), rev2(Y0, rev(nil))))))
one new Dependency Pair is created:

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, nil), rev2(Y0, rev(nil))))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 6
Rw
             ...
               →DP Problem 76
Rewriting Transformation


Dependency Pairs:

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, nil), rev2(Y0, rev(nil))))))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, nil), rev2(Y0, rev(nil))))))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, nil), rev2(Y0, rev(nil))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev(cons(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV(cons(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV(cons(X''', cons(Y''0, cons(Y'''', L'''')))) -> REV2(X''', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV2(X, cons(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0'', cons(Y''0, cons(Y'''', L'''')))) -> REV2(Y0'', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y', cons(Y0'', cons(Y'''', L'''')))) -> REV2(Y', cons(Y0'', cons(Y'''', L'''')))
REV(cons(X'', cons(Y0'', cons(Y'''', L'''')))) -> REV2(X'', cons(Y0'', cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, nil), rev2(Y0, rev(nil))))))


Rules:


rev1(0, nil) -> 0
rev1(s(X), nil) -> s(X)
rev1(X, cons(Y, L)) -> rev1(Y, L)
rev(nil) -> nil
rev(cons(X, L)) -> cons(rev1(X, L), rev2(X, L))
rev2(X, nil) -> nil
rev2(X, cons(Y, L)) -> rev(cons(X, rev(rev2(Y, L))))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, nil), rev2(Y0, rev(nil))))))
one new Dependency Pair is created:

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, nil), rev2(Y0, nil)))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 6
Rw
             ...
               →DP Problem 77
Rewriting Transformation


Dependency Pairs:

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, nil), rev2(Y0, nil)))))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, nil), rev2(Y0, rev(nil))))))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, nil), rev2(Y0, rev(nil))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev(cons(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV(cons(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV(cons(X''', cons(Y''0, cons(Y'''', L'''')))) -> REV2(X''', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV2(X, cons(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0'', cons(Y''0, cons(Y'''', L'''')))) -> REV2(Y0'', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y', cons(Y0'', cons(Y'''', L'''')))) -> REV2(Y', cons(Y0'', cons(Y'''', L'''')))
REV(cons(X'', cons(Y0'', cons(Y'''', L'''')))) -> REV2(X'', cons(Y0'', cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, nil), rev2(Y0, rev(nil))))))


Rules:


rev1(0, nil) -> 0
rev1(s(X), nil) -> s(X)
rev1(X, cons(Y, L)) -> rev1(Y, L)
rev(nil) -> nil
rev(cons(X, L)) -> cons(rev1(X, L), rev2(X, L))
rev2(X, nil) -> nil
rev2(X, cons(Y, L)) -> rev(cons(X, rev(rev2(Y, L))))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, nil), rev2(Y0, rev(nil))))))
one new Dependency Pair is created:

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, nil), rev2(Y0, nil)))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 6
Rw
             ...
               →DP Problem 78
Rewriting Transformation


Dependency Pairs:

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, nil), rev2(Y0, nil)))))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, nil), rev2(Y0, rev(nil))))))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, nil), rev2(Y0, rev(nil))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev(cons(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV(cons(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV(cons(X''', cons(Y''0, cons(Y'''', L'''')))) -> REV2(X''', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV2(X, cons(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0'', cons(Y''0, cons(Y'''', L'''')))) -> REV2(Y0'', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y', cons(Y0'', cons(Y'''', L'''')))) -> REV2(Y', cons(Y0'', cons(Y'''', L'''')))
REV(cons(X'', cons(Y0'', cons(Y'''', L'''')))) -> REV2(X'', cons(Y0'', cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, nil), rev2(Y0, nil)))))


Rules:


rev1(0, nil) -> 0
rev1(s(X), nil) -> s(X)
rev1(X, cons(Y, L)) -> rev1(Y, L)
rev(nil) -> nil
rev(cons(X, L)) -> cons(rev1(X, L), rev2(X, L))
rev2(X, nil) -> nil
rev2(X, cons(Y, L)) -> rev(cons(X, rev(rev2(Y, L))))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, nil), rev2(Y0, rev(nil))))))
one new Dependency Pair is created:

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, nil), rev2(Y0, nil)))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 6
Rw
             ...
               →DP Problem 79
Rewriting Transformation


Dependency Pairs:

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, nil), rev2(Y0, nil)))))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, nil), rev2(Y0, nil)))))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, nil), rev2(Y0, rev(nil))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev(cons(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV(cons(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV(cons(X''', cons(Y''0, cons(Y'''', L'''')))) -> REV2(X''', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV2(X, cons(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0'', cons(Y''0, cons(Y'''', L'''')))) -> REV2(Y0'', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y', cons(Y0'', cons(Y'''', L'''')))) -> REV2(Y', cons(Y0'', cons(Y'''', L'''')))
REV(cons(X'', cons(Y0'', cons(Y'''', L'''')))) -> REV2(X'', cons(Y0'', cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, nil), rev2(Y0, nil)))))


Rules:


rev1(0, nil) -> 0
rev1(s(X), nil) -> s(X)
rev1(X, cons(Y, L)) -> rev1(Y, L)
rev(nil) -> nil
rev(cons(X, L)) -> cons(rev1(X, L), rev2(X, L))
rev2(X, nil) -> nil
rev2(X, cons(Y, L)) -> rev(cons(X, rev(rev2(Y, L))))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, nil), rev2(Y0, rev(nil))))))
one new Dependency Pair is created:

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, nil), rev2(Y0, nil)))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 6
Rw
             ...
               →DP Problem 80
Rewriting Transformation


Dependency Pairs:

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, nil), rev2(Y0, nil)))))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, nil), rev2(Y0, nil)))))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, nil), rev2(Y0, nil)))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev(cons(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV(cons(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV(cons(X''', cons(Y''0, cons(Y'''', L'''')))) -> REV2(X''', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV2(X, cons(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0'', cons(Y''0, cons(Y'''', L'''')))) -> REV2(Y0'', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y', cons(Y0'', cons(Y'''', L'''')))) -> REV2(Y', cons(Y0'', cons(Y'''', L'''')))
REV(cons(X'', cons(Y0'', cons(Y'''', L'''')))) -> REV2(X'', cons(Y0'', cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, nil), rev2(Y0, nil)))))


Rules:


rev1(0, nil) -> 0
rev1(s(X), nil) -> s(X)
rev1(X, cons(Y, L)) -> rev1(Y, L)
rev(nil) -> nil
rev(cons(X, L)) -> cons(rev1(X, L), rev2(X, L))
rev2(X, nil) -> nil
rev2(X, cons(Y, L)) -> rev(cons(X, rev(rev2(Y, L))))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, nil), rev2(Y0, nil)))))
one new Dependency Pair is created:

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, nil), nil))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 6
Rw
             ...
               →DP Problem 81
Rewriting Transformation


Dependency Pairs:

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, nil), nil))))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, nil), rev2(Y0, nil)))))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, nil), rev2(Y0, nil)))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev(cons(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV(cons(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV(cons(X''', cons(Y''0, cons(Y'''', L'''')))) -> REV2(X''', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV2(X, cons(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0'', cons(Y''0, cons(Y'''', L'''')))) -> REV2(Y0'', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y', cons(Y0'', cons(Y'''', L'''')))) -> REV2(Y', cons(Y0'', cons(Y'''', L'''')))
REV(cons(X'', cons(Y0'', cons(Y'''', L'''')))) -> REV2(X'', cons(Y0'', cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, nil), rev2(Y0, nil)))))


Rules:


rev1(0, nil) -> 0
rev1(s(X), nil) -> s(X)
rev1(X, cons(Y, L)) -> rev1(Y, L)
rev(nil) -> nil
rev(cons(X, L)) -> cons(rev1(X, L), rev2(X, L))
rev2(X, nil) -> nil
rev2(X, cons(Y, L)) -> rev(cons(X, rev(rev2(Y, L))))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, nil), rev2(Y0, nil)))))
one new Dependency Pair is created:

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, nil), nil))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 6
Rw
             ...
               →DP Problem 82
Rewriting Transformation


Dependency Pairs:

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, nil), nil))))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, nil), rev2(Y0, nil)))))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, nil), rev2(Y0, nil)))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev(cons(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV(cons(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV(cons(X''', cons(Y''0, cons(Y'''', L'''')))) -> REV2(X''', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV2(X, cons(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0'', cons(Y''0, cons(Y'''', L'''')))) -> REV2(Y0'', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y', cons(Y0'', cons(Y'''', L'''')))) -> REV2(Y', cons(Y0'', cons(Y'''', L'''')))
REV(cons(X'', cons(Y0'', cons(Y'''', L'''')))) -> REV2(X'', cons(Y0'', cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, nil), nil))))


Rules:


rev1(0, nil) -> 0
rev1(s(X), nil) -> s(X)
rev1(X, cons(Y, L)) -> rev1(Y, L)
rev(nil) -> nil
rev(cons(X, L)) -> cons(rev1(X, L), rev2(X, L))
rev2(X, nil) -> nil
rev2(X, cons(Y, L)) -> rev(cons(X, rev(rev2(Y, L))))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, nil), rev2(Y0, nil)))))
one new Dependency Pair is created:

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, nil), nil))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 6
Rw
             ...
               →DP Problem 83
Rewriting Transformation


Dependency Pairs:

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, nil), nil))))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, nil), nil))))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, nil), rev2(Y0, nil)))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev(cons(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV(cons(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV(cons(X''', cons(Y''0, cons(Y'''', L'''')))) -> REV2(X''', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV2(X, cons(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0'', cons(Y''0, cons(Y'''', L'''')))) -> REV2(Y0'', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y', cons(Y0'', cons(Y'''', L'''')))) -> REV2(Y', cons(Y0'', cons(Y'''', L'''')))
REV(cons(X'', cons(Y0'', cons(Y'''', L'''')))) -> REV2(X'', cons(Y0'', cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, nil), nil))))


Rules:


rev1(0, nil) -> 0
rev1(s(X), nil) -> s(X)
rev1(X, cons(Y, L)) -> rev1(Y, L)
rev(nil) -> nil
rev(cons(X, L)) -> cons(rev1(X, L), rev2(X, L))
rev2(X, nil) -> nil
rev2(X, cons(Y, L)) -> rev(cons(X, rev(rev2(Y, L))))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, nil), rev2(Y0, nil)))))
one new Dependency Pair is created:

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, nil), nil))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 6
Rw
             ...
               →DP Problem 84
Rewriting Transformation


Dependency Pairs:

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, nil), nil))))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, nil), nil))))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, nil), nil))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev(cons(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV(cons(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV(cons(X''', cons(Y''0, cons(Y'''', L'''')))) -> REV2(X''', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV2(X, cons(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0'', cons(Y''0, cons(Y'''', L'''')))) -> REV2(Y0'', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y', cons(Y0'', cons(Y'''', L'''')))) -> REV2(Y', cons(Y0'', cons(Y'''', L'''')))
REV(cons(X'', cons(Y0'', cons(Y'''', L'''')))) -> REV2(X'', cons(Y0'', cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, nil), nil))))


Rules:


rev1(0, nil) -> 0
rev1(s(X), nil) -> s(X)
rev1(X, cons(Y, L)) -> rev1(Y, L)
rev(nil) -> nil
rev(cons(X, L)) -> cons(rev1(X, L), rev2(X, L))
rev2(X, nil) -> nil
rev2(X, cons(Y, L)) -> rev(cons(X, rev(rev2(Y, L))))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, nil), nil))))
one new Dependency Pair is created:

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), nil)))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 6
Rw
             ...
               →DP Problem 85
Rewriting Transformation


Dependency Pairs:

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, nil), nil))))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, nil), nil))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev(cons(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV(cons(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV(cons(X''', cons(Y''0, cons(Y'''', L'''')))) -> REV2(X''', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV2(X, cons(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0'', cons(Y''0, cons(Y'''', L'''')))) -> REV2(Y0'', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y', cons(Y0'', cons(Y'''', L'''')))) -> REV2(Y', cons(Y0'', cons(Y'''', L'''')))
REV(cons(X'', cons(Y0'', cons(Y'''', L'''')))) -> REV2(X'', cons(Y0'', cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, nil), nil))))


Rules:


rev1(0, nil) -> 0
rev1(s(X), nil) -> s(X)
rev1(X, cons(Y, L)) -> rev1(Y, L)
rev(nil) -> nil
rev(cons(X, L)) -> cons(rev1(X, L), rev2(X, L))
rev2(X, nil) -> nil
rev2(X, cons(Y, L)) -> rev(cons(X, rev(rev2(Y, L))))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, nil), nil))))
one new Dependency Pair is created:

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), nil)))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 6
Rw
             ...
               →DP Problem 86
Rewriting Transformation


Dependency Pairs:

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, nil), nil))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev(cons(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV(cons(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV(cons(X''', cons(Y''0, cons(Y'''', L'''')))) -> REV2(X''', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV2(X, cons(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0'', cons(Y''0, cons(Y'''', L'''')))) -> REV2(Y0'', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y', cons(Y0'', cons(Y'''', L'''')))) -> REV2(Y', cons(Y0'', cons(Y'''', L'''')))
REV(cons(X'', cons(Y0'', cons(Y'''', L'''')))) -> REV2(X'', cons(Y0'', cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, nil), nil))))


Rules:


rev1(0, nil) -> 0
rev1(s(X), nil) -> s(X)
rev1(X, cons(Y, L)) -> rev1(Y, L)
rev(nil) -> nil
rev(cons(X, L)) -> cons(rev1(X, L), rev2(X, L))
rev2(X, nil) -> nil
rev2(X, cons(Y, L)) -> rev(cons(X, rev(rev2(Y, L))))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, nil), nil))))
one new Dependency Pair is created:

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), nil)))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 6
Rw
             ...
               →DP Problem 87
Rewriting Transformation


Dependency Pairs:

REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev(cons(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV(cons(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV(cons(X''', cons(Y''0, cons(Y'''', L'''')))) -> REV2(X''', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV2(X, cons(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0'', cons(Y''0, cons(Y'''', L'''')))) -> REV2(Y0'', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y', cons(Y0'', cons(Y'''', L'''')))) -> REV2(Y', cons(Y0'', cons(Y'''', L'''')))
REV(cons(X'', cons(Y0'', cons(Y'''', L'''')))) -> REV2(X'', cons(Y0'', cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, nil), nil))))


Rules:


rev1(0, nil) -> 0
rev1(s(X), nil) -> s(X)
rev1(X, cons(Y, L)) -> rev1(Y, L)
rev(nil) -> nil
rev(cons(X, L)) -> cons(rev1(X, L), rev2(X, L))
rev2(X, nil) -> nil
rev2(X, cons(Y, L)) -> rev(cons(X, rev(rev2(Y, L))))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), rev2(rev1(Y0, nil), nil))))
one new Dependency Pair is created:

REV2(X, cons(Y0, cons(Y''', nil))) -> REV(cons(X, cons(rev1(rev1(Y0, nil), nil), nil)))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 6
Rw
             ...
               →DP Problem 88
Forward Instantiation Transformation


Dependency Pairs:

REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev(cons(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV(cons(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV(cons(X''', cons(Y''0, cons(Y'''', L'''')))) -> REV2(X''', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV2(X, cons(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0'', cons(Y''0, cons(Y'''', L'''')))) -> REV2(Y0'', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y', cons(Y0'', cons(Y'''', L'''')))) -> REV2(Y', cons(Y0'', cons(Y'''', L'''')))
REV(cons(X'', cons(Y0'', cons(Y'''', L'''')))) -> REV2(X'', cons(Y0'', cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))))


Rules:


rev1(0, nil) -> 0
rev1(s(X), nil) -> s(X)
rev1(X, cons(Y, L)) -> rev1(Y, L)
rev(nil) -> nil
rev(cons(X, L)) -> cons(rev1(X, L), rev2(X, L))
rev2(X, nil) -> nil
rev2(X, cons(Y, L)) -> rev(cons(X, rev(rev2(Y, L))))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

REV(cons(X'', cons(Y0'', cons(Y'''', L'''')))) -> REV2(X'', cons(Y0'', cons(Y'''', L'''')))
three new Dependency Pairs are created:

REV(cons(X''', cons(Y0'''', cons(Y'''''', cons(Y''''''', L''''''))))) -> REV2(X''', cons(Y0'''', cons(Y'''''', cons(Y''''''', L''''''))))
REV(cons(X''', cons(Y0'''', cons(Y'''''', cons(Y0'''''', cons(Y'''''''', L'''''''')))))) -> REV2(X''', cons(Y0'''', cons(Y'''''', cons(Y0'''''', cons(Y'''''''', L'''''''')))))
REV(cons(X''', cons(Y0''', cons(Y'''''', cons(Y''', L'''))))) -> REV2(X''', cons(Y0''', cons(Y'''''', cons(Y''', L'''))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 6
Rw
             ...
               →DP Problem 89
Forward Instantiation Transformation


Dependency Pairs:

REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))))
REV(cons(X''', cons(Y0''', cons(Y'''''', cons(Y''', L'''))))) -> REV2(X''', cons(Y0''', cons(Y'''''', cons(Y''', L'''))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV(cons(X''', cons(Y0'''', cons(Y'''''', cons(Y0'''''', cons(Y'''''''', L'''''''')))))) -> REV2(X''', cons(Y0'''', cons(Y'''''', cons(Y0'''''', cons(Y'''''''', L'''''''')))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV(cons(X''', cons(Y0'''', cons(Y'''''', cons(Y''''''', L''''''))))) -> REV2(X''', cons(Y0'''', cons(Y'''''', cons(Y''''''', L''''''))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV(cons(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV2(X, cons(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0'', cons(Y''0, cons(Y'''', L'''')))) -> REV2(Y0'', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y', cons(Y0'', cons(Y'''', L'''')))) -> REV2(Y', cons(Y0'', cons(Y'''', L'''')))
REV(cons(X''', cons(Y''0, cons(Y'''', L'''')))) -> REV2(X''', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev(cons(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))


Rules:


rev1(0, nil) -> 0
rev1(s(X), nil) -> s(X)
rev1(X, cons(Y, L)) -> rev1(Y, L)
rev(nil) -> nil
rev(cons(X, L)) -> cons(rev1(X, L), rev2(X, L))
rev2(X, nil) -> nil
rev2(X, cons(Y, L)) -> rev(cons(X, rev(rev2(Y, L))))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

REV2(X, cons(Y', cons(Y0'', cons(Y'''', L'''')))) -> REV2(Y', cons(Y0'', cons(Y'''', L'''')))
four new Dependency Pairs are created:

REV2(X, cons(Y''', cons(Y0'''', cons(Y'''''', cons(Y''''''', L''''''))))) -> REV2(Y''', cons(Y0'''', cons(Y'''''', cons(Y''''''', L''''''))))
REV2(X, cons(Y'', cons(Y0'''', cons(Y'''''', cons(Y''''''', L''''''))))) -> REV2(Y'', cons(Y0'''', cons(Y'''''', cons(Y''''''', L''''''))))
REV2(X, cons(Y'', cons(Y0'''', cons(Y'''''', cons(Y0'''''', cons(Y'''''''', L'''''''')))))) -> REV2(Y'', cons(Y0'''', cons(Y'''''', cons(Y0'''''', cons(Y'''''''', L'''''''')))))
REV2(X, cons(Y'0, cons(Y0''', cons(Y'''''', cons(Y''', L'''))))) -> REV2(Y'0, cons(Y0''', cons(Y'''''', cons(Y''', L'''))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 6
Rw
             ...
               →DP Problem 90
Forward Instantiation Transformation


Dependency Pairs:

REV2(X, cons(Y'0, cons(Y0''', cons(Y'''''', cons(Y''', L'''))))) -> REV2(Y'0, cons(Y0''', cons(Y'''''', cons(Y''', L'''))))
REV2(X, cons(Y'', cons(Y0'''', cons(Y'''''', cons(Y0'''''', cons(Y'''''''', L'''''''')))))) -> REV2(Y'', cons(Y0'''', cons(Y'''''', cons(Y0'''''', cons(Y'''''''', L'''''''')))))
REV2(X, cons(Y'', cons(Y0'''', cons(Y'''''', cons(Y''''''', L''''''))))) -> REV2(Y'', cons(Y0'''', cons(Y'''''', cons(Y''''''', L''''''))))
REV2(X, cons(Y''', cons(Y0'''', cons(Y'''''', cons(Y''''''', L''''''))))) -> REV2(Y''', cons(Y0'''', cons(Y'''''', cons(Y''''''', L''''''))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev(cons(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV(cons(X''', cons(Y0''', cons(Y'''''', cons(Y''', L'''))))) -> REV2(X''', cons(Y0''', cons(Y'''''', cons(Y''', L'''))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV(cons(X''', cons(Y0'''', cons(Y'''''', cons(Y0'''''', cons(Y'''''''', L'''''''')))))) -> REV2(X''', cons(Y0'''', cons(Y'''''', cons(Y0'''''', cons(Y'''''''', L'''''''')))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV(cons(X''', cons(Y0'''', cons(Y'''''', cons(Y''''''', L''''''))))) -> REV2(X''', cons(Y0'''', cons(Y'''''', cons(Y''''''', L''''''))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV(cons(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV2(X, cons(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0'', cons(Y''0, cons(Y'''', L'''')))) -> REV2(Y0'', cons(Y''0, cons(Y'''', L'''')))
REV(cons(X''', cons(Y''0, cons(Y'''', L'''')))) -> REV2(X''', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))))


Rules:


rev1(0, nil) -> 0
rev1(s(X), nil) -> s(X)
rev1(X, cons(Y, L)) -> rev1(Y, L)
rev(nil) -> nil
rev(cons(X, L)) -> cons(rev1(X, L), rev2(X, L))
rev2(X, nil) -> nil
rev2(X, cons(Y, L)) -> rev(cons(X, rev(rev2(Y, L))))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

REV(cons(X''', cons(Y''0, cons(Y'''', L'''')))) -> REV2(X''', cons(Y''0, cons(Y'''', L'''')))
seven new Dependency Pairs are created:

REV(cons(X'''', cons(Y''0'', cons(Y'''''', cons(Y''''''', L''''''))))) -> REV2(X'''', cons(Y''0'', cons(Y'''''', cons(Y''''''', L''''''))))
REV(cons(X'''', cons(Y''0', cons(Y'''''', cons(Y0'''''', cons(Y'''''''', L'''''''')))))) -> REV2(X'''', cons(Y''0', cons(Y'''''', cons(Y0'''''', cons(Y'''''''', L'''''''')))))
REV(cons(X'''', cons(Y''0', cons(Y'''''', cons(Y''', L'''))))) -> REV2(X'''', cons(Y''0', cons(Y'''''', cons(Y''', L'''))))
REV(cons(X'''', cons(Y''0', cons(Y'''''', cons(Y'''''''''', cons(Y''''''''''', L'''''''')))))) -> REV2(X'''', cons(Y''0', cons(Y'''''', cons(Y'''''''''', cons(Y''''''''''', L'''''''')))))
REV(cons(X'''', cons(Y''0', cons(Y''''', cons(Y'''''''''', cons(Y''''''''''', L'''''''')))))) -> REV2(X'''', cons(Y''0', cons(Y''''', cons(Y'''''''''', cons(Y''''''''''', L'''''''')))))
REV(cons(X'''', cons(Y''0', cons(Y''''', cons(Y'''''''', cons(Y0'''''''', cons(Y'''''''''', L''''''''''))))))) -> REV2(X'''', cons(Y''0', cons(Y''''', cons(Y'''''''', cons(Y0'''''''', cons(Y'''''''''', L''''''''''))))))
REV(cons(X'''', cons(Y''0', cons(Y'''''', cons(Y'''''''', cons(Y'''''0, L'''''')))))) -> REV2(X'''', cons(Y''0', cons(Y'''''', cons(Y'''''''', cons(Y'''''0, L'''''')))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 6
Rw
             ...
               →DP Problem 91
Forward Instantiation Transformation


Dependency Pairs:

REV(cons(X'''', cons(Y''0', cons(Y'''''', cons(Y'''''''', cons(Y'''''0, L'''''')))))) -> REV2(X'''', cons(Y''0', cons(Y'''''', cons(Y'''''''', cons(Y'''''0, L'''''')))))
REV(cons(X'''', cons(Y''0', cons(Y''''', cons(Y'''''''', cons(Y0'''''''', cons(Y'''''''''', L''''''''''))))))) -> REV2(X'''', cons(Y''0', cons(Y''''', cons(Y'''''''', cons(Y0'''''''', cons(Y'''''''''', L''''''''''))))))
REV(cons(X'''', cons(Y''0', cons(Y''''', cons(Y'''''''''', cons(Y''''''''''', L'''''''')))))) -> REV2(X'''', cons(Y''0', cons(Y''''', cons(Y'''''''''', cons(Y''''''''''', L'''''''')))))
REV(cons(X'''', cons(Y''0', cons(Y'''''', cons(Y'''''''''', cons(Y''''''''''', L'''''''')))))) -> REV2(X'''', cons(Y''0', cons(Y'''''', cons(Y'''''''''', cons(Y''''''''''', L'''''''')))))
REV(cons(X'''', cons(Y''0', cons(Y'''''', cons(Y''', L'''))))) -> REV2(X'''', cons(Y''0', cons(Y'''''', cons(Y''', L'''))))
REV2(X, cons(Y'', cons(Y0'''', cons(Y'''''', cons(Y0'''''', cons(Y'''''''', L'''''''')))))) -> REV2(Y'', cons(Y0'''', cons(Y'''''', cons(Y0'''''', cons(Y'''''''', L'''''''')))))
REV2(X, cons(Y'', cons(Y0'''', cons(Y'''''', cons(Y''''''', L''''''))))) -> REV2(Y'', cons(Y0'''', cons(Y'''''', cons(Y''''''', L''''''))))
REV2(X, cons(Y''', cons(Y0'''', cons(Y'''''', cons(Y''''''', L''''''))))) -> REV2(Y''', cons(Y0'''', cons(Y'''''', cons(Y''''''', L''''''))))
REV(cons(X'''', cons(Y''0', cons(Y'''''', cons(Y0'''''', cons(Y'''''''', L'''''''')))))) -> REV2(X'''', cons(Y''0', cons(Y'''''', cons(Y0'''''', cons(Y'''''''', L'''''''')))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))))
REV(cons(X'''', cons(Y''0'', cons(Y'''''', cons(Y''''''', L''''''))))) -> REV2(X'''', cons(Y''0'', cons(Y'''''', cons(Y''''''', L''''''))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev(cons(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV(cons(X''', cons(Y0''', cons(Y'''''', cons(Y''', L'''))))) -> REV2(X''', cons(Y0''', cons(Y'''''', cons(Y''', L'''))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV(cons(X''', cons(Y0'''', cons(Y'''''', cons(Y0'''''', cons(Y'''''''', L'''''''')))))) -> REV2(X''', cons(Y0'''', cons(Y'''''', cons(Y0'''''', cons(Y'''''''', L'''''''')))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV(cons(X''', cons(Y0'''', cons(Y'''''', cons(Y''''''', L''''''))))) -> REV2(X''', cons(Y0'''', cons(Y'''''', cons(Y''''''', L''''''))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV(cons(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV2(X, cons(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0'', cons(Y''0, cons(Y'''', L'''')))) -> REV2(Y0'', cons(Y''0, cons(Y'''', L'''')))
REV2(X, cons(Y'0, cons(Y0''', cons(Y'''''', cons(Y''', L'''))))) -> REV2(Y'0, cons(Y0''', cons(Y'''''', cons(Y''', L'''))))


Rules:


rev1(0, nil) -> 0
rev1(s(X), nil) -> s(X)
rev1(X, cons(Y, L)) -> rev1(Y, L)
rev(nil) -> nil
rev(cons(X, L)) -> cons(rev1(X, L), rev2(X, L))
rev2(X, nil) -> nil
rev2(X, cons(Y, L)) -> rev(cons(X, rev(rev2(Y, L))))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

REV2(X, cons(Y0'', cons(Y''0, cons(Y'''', L'''')))) -> REV2(Y0'', cons(Y''0, cons(Y'''', L'''')))
seven new Dependency Pairs are created:

REV2(X, cons(Y0'''', cons(Y''0'', cons(Y'''''', cons(Y''''''', L''''''))))) -> REV2(Y0'''', cons(Y''0'', cons(Y'''''', cons(Y''''''', L''''''))))
REV2(X, cons(Y0'''', cons(Y''0', cons(Y'''''', cons(Y0'''''', cons(Y'''''''', L'''''''')))))) -> REV2(Y0'''', cons(Y''0', cons(Y'''''', cons(Y0'''''', cons(Y'''''''', L'''''''')))))
REV2(X, cons(Y0''', cons(Y''0', cons(Y'''''', cons(Y''', L'''))))) -> REV2(Y0''', cons(Y''0', cons(Y'''''', cons(Y''', L'''))))
REV2(X, cons(Y0''', cons(Y''0', cons(Y'''''', cons(Y'''''''''', cons(Y''''''''''', L'''''''')))))) -> REV2(Y0''', cons(Y''0', cons(Y'''''', cons(Y'''''''''', cons(Y''''''''''', L'''''''')))))
REV2(X, cons(Y0''', cons(Y''0', cons(Y''''', cons(Y'''''''''', cons(Y''''''''''', L'''''''')))))) -> REV2(Y0''', cons(Y''0', cons(Y''''', cons(Y'''''''''', cons(Y''''''''''', L'''''''')))))
REV2(X, cons(Y0''', cons(Y''0', cons(Y''''', cons(Y'''''''', cons(Y0'''''''', cons(Y'''''''''', L''''''''''))))))) -> REV2(Y0''', cons(Y''0', cons(Y''''', cons(Y'''''''', cons(Y0'''''''', cons(Y'''''''''', L''''''''''))))))
REV2(X, cons(Y0''', cons(Y''0', cons(Y'''''', cons(Y'''''''', cons(Y'''''0, L'''''')))))) -> REV2(Y0''', cons(Y''0', cons(Y'''''', cons(Y'''''''', cons(Y'''''0, L'''''')))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 6
Rw
             ...
               →DP Problem 92
Remaining Obligation(s)




The following remains to be proven:
Dependency Pairs:

REV(cons(X'''', cons(Y''0', cons(Y''''', cons(Y'''''''', cons(Y0'''''''', cons(Y'''''''''', L''''''''''))))))) -> REV2(X'''', cons(Y''0', cons(Y''''', cons(Y'''''''', cons(Y0'''''''', cons(Y'''''''''', L''''''''''))))))
REV(cons(X'''', cons(Y''0', cons(Y''''', cons(Y'''''''''', cons(Y''''''''''', L'''''''')))))) -> REV2(X'''', cons(Y''0', cons(Y''''', cons(Y'''''''''', cons(Y''''''''''', L'''''''')))))
REV(cons(X'''', cons(Y''0', cons(Y'''''', cons(Y'''''''''', cons(Y''''''''''', L'''''''')))))) -> REV2(X'''', cons(Y''0', cons(Y'''''', cons(Y'''''''''', cons(Y''''''''''', L'''''''')))))
REV(cons(X'''', cons(Y''0', cons(Y'''''', cons(Y''', L'''))))) -> REV2(X'''', cons(Y''0', cons(Y'''''', cons(Y''', L'''))))
REV2(X, cons(Y0''', cons(Y''0', cons(Y'''''', cons(Y'''''''', cons(Y'''''0, L'''''')))))) -> REV2(Y0''', cons(Y''0', cons(Y'''''', cons(Y'''''''', cons(Y'''''0, L'''''')))))
REV2(X, cons(Y0''', cons(Y''0', cons(Y''''', cons(Y'''''''', cons(Y0'''''''', cons(Y'''''''''', L''''''''''))))))) -> REV2(Y0''', cons(Y''0', cons(Y''''', cons(Y'''''''', cons(Y0'''''''', cons(Y'''''''''', L''''''''''))))))
REV2(X, cons(Y0''', cons(Y''0', cons(Y''''', cons(Y'''''''''', cons(Y''''''''''', L'''''''')))))) -> REV2(Y0''', cons(Y''0', cons(Y''''', cons(Y'''''''''', cons(Y''''''''''', L'''''''')))))
REV2(X, cons(Y0''', cons(Y''0', cons(Y'''''', cons(Y'''''''''', cons(Y''''''''''', L'''''''')))))) -> REV2(Y0''', cons(Y''0', cons(Y'''''', cons(Y'''''''''', cons(Y''''''''''', L'''''''')))))
REV2(X, cons(Y0''', cons(Y''0', cons(Y'''''', cons(Y''', L'''))))) -> REV2(Y0''', cons(Y''0', cons(Y'''''', cons(Y''', L'''))))
REV2(X, cons(Y0'''', cons(Y''0', cons(Y'''''', cons(Y0'''''', cons(Y'''''''', L'''''''')))))) -> REV2(Y0'''', cons(Y''0', cons(Y'''''', cons(Y0'''''', cons(Y'''''''', L'''''''')))))
REV2(X, cons(Y0'''', cons(Y''0'', cons(Y'''''', cons(Y''''''', L''''''))))) -> REV2(Y0'''', cons(Y''0'', cons(Y'''''', cons(Y''''''', L''''''))))
REV2(X, cons(Y'0, cons(Y0''', cons(Y'''''', cons(Y''', L'''))))) -> REV2(Y'0, cons(Y0''', cons(Y'''''', cons(Y''', L'''))))
REV2(X, cons(Y'', cons(Y0'''', cons(Y'''''', cons(Y0'''''', cons(Y'''''''', L'''''''')))))) -> REV2(Y'', cons(Y0'''', cons(Y'''''', cons(Y0'''''', cons(Y'''''''', L'''''''')))))
REV2(X, cons(Y'', cons(Y0'''', cons(Y'''''', cons(Y''''''', L''''''))))) -> REV2(Y'', cons(Y0'''', cons(Y'''''', cons(Y''''''', L''''''))))
REV2(X, cons(Y''', cons(Y0'''', cons(Y'''''', cons(Y''''''', L''''''))))) -> REV2(Y''', cons(Y0'''', cons(Y'''''', cons(Y''''''', L''''''))))
REV(cons(X'''', cons(Y''0', cons(Y'''''', cons(Y0'''''', cons(Y'''''''', L'''''''')))))) -> REV2(X'''', cons(Y''0', cons(Y'''''', cons(Y0'''''', cons(Y'''''''', L'''''''')))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))))
REV(cons(X'''', cons(Y''0'', cons(Y'''''', cons(Y''''''', L''''''))))) -> REV2(X'''', cons(Y''0'', cons(Y'''''', cons(Y''''''', L''''''))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev(cons(Y''', rev(rev2(Y', L')))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV(cons(X''', cons(Y0''', cons(Y'''''', cons(Y''', L'''))))) -> REV2(X''', cons(Y0''', cons(Y'''''', cons(Y''', L'''))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV(cons(X''', cons(Y0'''', cons(Y'''''', cons(Y0'''''', cons(Y'''''''', L'''''''')))))) -> REV2(X''', cons(Y0'''', cons(Y'''''', cons(Y0'''''', cons(Y'''''''', L'''''''')))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(X, cons(rev1(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))), rev2(rev1(Y0, rev(rev2(Y''', cons(Y', L')))), rev2(Y0, rev(rev2(Y''', cons(Y', L'))))))))
REV(cons(X''', cons(Y0'''', cons(Y'''''', cons(Y''''''', L''''''))))) -> REV2(X''', cons(Y0'''', cons(Y'''''', cons(Y''''''', L''''''))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV(cons(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(X''', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV2(X, cons(Y0, cons(Y''', cons(Y', L')))) -> REV(cons(rev1(rev1(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L')))), rev2(rev1(Y''', rev(rev2(Y', L'))), rev2(Y''', rev(rev2(Y', L'))))), rev2(Y0, rev(rev(cons(Y''', rev(rev2(Y', L'))))))))
REV2(X, cons(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))) -> REV2(Y0', cons(Y'''', cons(Y0'''', cons(Y'''''', L''''''))))
REV(cons(X'''', cons(Y''0', cons(Y'''''', cons(Y'''''''', cons(Y'''''0, L'''''')))))) -> REV2(X'''', cons(Y''0', cons(Y'''''', cons(Y'''''''', cons(Y'''''0, L'''''')))))


Rules:


rev1(0, nil) -> 0
rev1(s(X), nil) -> s(X)
rev1(X, cons(Y, L)) -> rev1(Y, L)
rev(nil) -> nil
rev(cons(X, L)) -> cons(rev1(X, L), rev2(X, L))
rev2(X, nil) -> nil
rev2(X, cons(Y, L)) -> rev(cons(X, rev(rev2(Y, L))))


Strategy:

innermost



Innermost Termination of R could not be shown.
Duration:
0:38 minutes