R
↳Dependency Pair Analysis
PLUS(s(X), Y) -> PLUS(X, Y)
MIN(s(X), s(Y)) -> MIN(X, Y)
MIN(min(X, Y), Z) -> MIN(X, plus(Y, Z))
MIN(min(X, Y), Z) -> PLUS(Y, Z)
QUOT(s(X), s(Y)) -> QUOT(min(X, Y), s(Y))
QUOT(s(X), s(Y)) -> MIN(X, Y)
R
↳DPs
→DP Problem 1
↳Usable Rules (Innermost)
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
PLUS(s(X), Y) -> PLUS(X, Y)
plus(0, Y) -> Y
plus(s(X), Y) -> s(plus(X, Y))
min(X, 0) -> X
min(s(X), s(Y)) -> min(X, Y)
min(min(X, Y), Z) -> min(X, plus(Y, Z))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(min(X, Y), s(Y)))
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 4
↳Size-Change Principle
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
PLUS(s(X), Y) -> PLUS(X, Y)
none
innermost
|
|
trivial
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳Usable Rules (Innermost)
→DP Problem 3
↳UsableRules
MIN(min(X, Y), Z) -> MIN(X, plus(Y, Z))
MIN(s(X), s(Y)) -> MIN(X, Y)
plus(0, Y) -> Y
plus(s(X), Y) -> s(plus(X, Y))
min(X, 0) -> X
min(s(X), s(Y)) -> min(X, Y)
min(min(X, Y), Z) -> min(X, plus(Y, Z))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(min(X, Y), s(Y)))
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 5
↳Size-Change Principle
→DP Problem 3
↳UsableRules
MIN(min(X, Y), Z) -> MIN(X, plus(Y, Z))
MIN(s(X), s(Y)) -> MIN(X, Y)
plus(s(X), Y) -> s(plus(X, Y))
plus(0, Y) -> Y
innermost
|
|
|
|
trivial
min(x1, x2) -> min(x1, x2)
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳Usable Rules (Innermost)
QUOT(s(X), s(Y)) -> QUOT(min(X, Y), s(Y))
plus(0, Y) -> Y
plus(s(X), Y) -> s(plus(X, Y))
min(X, 0) -> X
min(s(X), s(Y)) -> min(X, Y)
min(min(X, Y), Z) -> min(X, plus(Y, Z))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(min(X, Y), s(Y)))
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 6
↳Negative Polynomial Order
QUOT(s(X), s(Y)) -> QUOT(min(X, Y), s(Y))
plus(s(X), Y) -> s(plus(X, Y))
plus(0, Y) -> Y
min(min(X, Y), Z) -> min(X, plus(Y, Z))
min(s(X), s(Y)) -> min(X, Y)
min(X, 0) -> X
innermost
QUOT(s(X), s(Y)) -> QUOT(min(X, Y), s(Y))
plus(s(X), Y) -> s(plus(X, Y))
plus(0, Y) -> Y
min(min(X, Y), Z) -> min(X, plus(Y, Z))
min(s(X), s(Y)) -> min(X, Y)
min(X, 0) -> X
POL( QUOT(x1, x2) ) = x1
POL( s(x1) ) = x1 + 1
POL( min(x1, x2) ) = x1
POL( plus(x1, x2) ) = x1 + x2
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 6
↳Neg POLO
...
→DP Problem 7
↳Dependency Graph
plus(s(X), Y) -> s(plus(X, Y))
plus(0, Y) -> Y
min(min(X, Y), Z) -> min(X, plus(Y, Z))
min(s(X), s(Y)) -> min(X, Y)
min(X, 0) -> X
innermost