Term Rewriting System R:
[Y, X]
plus(0, Y) -> Y
plus(s(X), Y) -> s(plus(X, Y))
min(X, 0) -> X
min(s(X), s(Y)) -> min(X, Y)
min(min(X, Y), Z) -> min(X, plus(Y, Z))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(min(X, Y), s(Y)))

Innermost Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

PLUS(s(X), Y) -> PLUS(X, Y)
MIN(s(X), s(Y)) -> MIN(X, Y)
MIN(min(X, Y), Z) -> MIN(X, plus(Y, Z))
MIN(min(X, Y), Z) -> PLUS(Y, Z)
QUOT(s(X), s(Y)) -> QUOT(min(X, Y), s(Y))
QUOT(s(X), s(Y)) -> MIN(X, Y)

Furthermore, R contains three SCCs.


   R
DPs
       →DP Problem 1
Argument Filtering and Ordering
       →DP Problem 2
AFS
       →DP Problem 3
Nar


Dependency Pair:

PLUS(s(X), Y) -> PLUS(X, Y)


Rules:


plus(0, Y) -> Y
plus(s(X), Y) -> s(plus(X, Y))
min(X, 0) -> X
min(s(X), s(Y)) -> min(X, Y)
min(min(X, Y), Z) -> min(X, plus(Y, Z))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(min(X, Y), s(Y)))


Strategy:

innermost




The following dependency pair can be strictly oriented:

PLUS(s(X), Y) -> PLUS(X, Y)


There are no usable rules for innermost that need to be oriented.
Used ordering: Homeomorphic Embedding Order with EMB
resulting in one new DP problem.
Used Argument Filtering System:
PLUS(x1, x2) -> PLUS(x1, x2)
s(x1) -> s(x1)


   R
DPs
       →DP Problem 1
AFS
           →DP Problem 4
Dependency Graph
       →DP Problem 2
AFS
       →DP Problem 3
Nar


Dependency Pair:


Rules:


plus(0, Y) -> Y
plus(s(X), Y) -> s(plus(X, Y))
min(X, 0) -> X
min(s(X), s(Y)) -> min(X, Y)
min(min(X, Y), Z) -> min(X, plus(Y, Z))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(min(X, Y), s(Y)))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
Argument Filtering and Ordering
       →DP Problem 3
Nar


Dependency Pairs:

MIN(min(X, Y), Z) -> MIN(X, plus(Y, Z))
MIN(s(X), s(Y)) -> MIN(X, Y)


Rules:


plus(0, Y) -> Y
plus(s(X), Y) -> s(plus(X, Y))
min(X, 0) -> X
min(s(X), s(Y)) -> min(X, Y)
min(min(X, Y), Z) -> min(X, plus(Y, Z))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(min(X, Y), s(Y)))


Strategy:

innermost




The following dependency pair can be strictly oriented:

MIN(min(X, Y), Z) -> MIN(X, plus(Y, Z))


The following usable rules for innermost can be oriented:

plus(0, Y) -> Y
plus(s(X), Y) -> s(plus(X, Y))


Used ordering: Homeomorphic Embedding Order with EMB
resulting in one new DP problem.
Used Argument Filtering System:
MIN(x1, x2) -> MIN(x1, x2)
s(x1) -> x1
min(x1, x2) -> min(x1, x2)
plus(x1, x2) -> x2


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
           →DP Problem 5
Argument Filtering and Ordering
       →DP Problem 3
Nar


Dependency Pair:

MIN(s(X), s(Y)) -> MIN(X, Y)


Rules:


plus(0, Y) -> Y
plus(s(X), Y) -> s(plus(X, Y))
min(X, 0) -> X
min(s(X), s(Y)) -> min(X, Y)
min(min(X, Y), Z) -> min(X, plus(Y, Z))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(min(X, Y), s(Y)))


Strategy:

innermost




The following dependency pair can be strictly oriented:

MIN(s(X), s(Y)) -> MIN(X, Y)


There are no usable rules for innermost that need to be oriented.
Used ordering: Homeomorphic Embedding Order with EMB
resulting in one new DP problem.
Used Argument Filtering System:
MIN(x1, x2) -> MIN(x1, x2)
s(x1) -> s(x1)


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
           →DP Problem 5
AFS
             ...
               →DP Problem 6
Dependency Graph
       →DP Problem 3
Nar


Dependency Pair:


Rules:


plus(0, Y) -> Y
plus(s(X), Y) -> s(plus(X, Y))
min(X, 0) -> X
min(s(X), s(Y)) -> min(X, Y)
min(min(X, Y), Z) -> min(X, plus(Y, Z))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(min(X, Y), s(Y)))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
Narrowing Transformation


Dependency Pair:

QUOT(s(X), s(Y)) -> QUOT(min(X, Y), s(Y))


Rules:


plus(0, Y) -> Y
plus(s(X), Y) -> s(plus(X, Y))
min(X, 0) -> X
min(s(X), s(Y)) -> min(X, Y)
min(min(X, Y), Z) -> min(X, plus(Y, Z))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(min(X, Y), s(Y)))


Strategy:

innermost




On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

QUOT(s(X), s(Y)) -> QUOT(min(X, Y), s(Y))
three new Dependency Pairs are created:

QUOT(s(X''), s(0)) -> QUOT(X'', s(0))
QUOT(s(s(X'')), s(s(Y''))) -> QUOT(min(X'', Y''), s(s(Y'')))
QUOT(s(min(X'', Y'')), s(Z)) -> QUOT(min(X'', plus(Y'', Z)), s(Z))

The transformation is resulting in three new DP problems:



   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
Nar
           →DP Problem 7
Forward Instantiation Transformation
           →DP Problem 8
Remaining
           →DP Problem 9
Remaining


Dependency Pair:

QUOT(s(X''), s(0)) -> QUOT(X'', s(0))


Rules:


plus(0, Y) -> Y
plus(s(X), Y) -> s(plus(X, Y))
min(X, 0) -> X
min(s(X), s(Y)) -> min(X, Y)
min(min(X, Y), Z) -> min(X, plus(Y, Z))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(min(X, Y), s(Y)))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

QUOT(s(X''), s(0)) -> QUOT(X'', s(0))
one new Dependency Pair is created:

QUOT(s(s(X'''')), s(0)) -> QUOT(s(X''''), s(0))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
Nar
           →DP Problem 7
FwdInst
             ...
               →DP Problem 10
Argument Filtering and Ordering
           →DP Problem 8
Remaining
           →DP Problem 9
Remaining


Dependency Pair:

QUOT(s(s(X'''')), s(0)) -> QUOT(s(X''''), s(0))


Rules:


plus(0, Y) -> Y
plus(s(X), Y) -> s(plus(X, Y))
min(X, 0) -> X
min(s(X), s(Y)) -> min(X, Y)
min(min(X, Y), Z) -> min(X, plus(Y, Z))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(min(X, Y), s(Y)))


Strategy:

innermost




The following dependency pair can be strictly oriented:

QUOT(s(s(X'''')), s(0)) -> QUOT(s(X''''), s(0))


There are no usable rules for innermost that need to be oriented.
Used ordering: Homeomorphic Embedding Order with EMB
resulting in one new DP problem.
Used Argument Filtering System:
QUOT(x1, x2) -> QUOT(x1, x2)
s(x1) -> s(x1)


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
Nar
           →DP Problem 7
FwdInst
             ...
               →DP Problem 11
Dependency Graph
           →DP Problem 8
Remaining
           →DP Problem 9
Remaining


Dependency Pair:


Rules:


plus(0, Y) -> Y
plus(s(X), Y) -> s(plus(X, Y))
min(X, 0) -> X
min(s(X), s(Y)) -> min(X, Y)
min(min(X, Y), Z) -> min(X, plus(Y, Z))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(min(X, Y), s(Y)))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
Nar
           →DP Problem 7
FwdInst
           →DP Problem 8
Remaining Obligation(s)
           →DP Problem 9
Remaining Obligation(s)




The following remains to be proven:


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
Nar
           →DP Problem 7
FwdInst
           →DP Problem 8
Remaining Obligation(s)
           →DP Problem 9
Remaining Obligation(s)




The following remains to be proven:

Innermost Termination of R could not be shown.
Duration:
0:00 minutes