R
↳Dependency Pair Analysis
LE(s(X), s(Y)) -> LE(X, Y)
APP(cons(N, L), Y) -> APP(L, Y)
LOW(N, cons(M, L)) -> IFLOW(le(M, N), N, cons(M, L))
LOW(N, cons(M, L)) -> LE(M, N)
IFLOW(true, N, cons(M, L)) -> LOW(N, L)
IFLOW(false, N, cons(M, L)) -> LOW(N, L)
HIGH(N, cons(M, L)) -> IFHIGH(le(M, N), N, cons(M, L))
HIGH(N, cons(M, L)) -> LE(M, N)
IFHIGH(true, N, cons(M, L)) -> HIGH(N, L)
IFHIGH(false, N, cons(M, L)) -> HIGH(N, L)
QUICKSORT(cons(N, L)) -> APP(quicksort(low(N, L)), cons(N, quicksort(high(N, L))))
QUICKSORT(cons(N, L)) -> QUICKSORT(low(N, L))
QUICKSORT(cons(N, L)) -> LOW(N, L)
QUICKSORT(cons(N, L)) -> QUICKSORT(high(N, L))
QUICKSORT(cons(N, L)) -> HIGH(N, L)
R
↳DPs
→DP Problem 1
↳Usable Rules (Innermost)
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
LE(s(X), s(Y)) -> LE(X, Y)
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
app(nil, Y) -> Y
app(cons(N, L), Y) -> cons(N, app(L, Y))
low(N, nil) -> nil
low(N, cons(M, L)) -> iflow(le(M, N), N, cons(M, L))
iflow(true, N, cons(M, L)) -> cons(M, low(N, L))
iflow(false, N, cons(M, L)) -> low(N, L)
high(N, nil) -> nil
high(N, cons(M, L)) -> ifhigh(le(M, N), N, cons(M, L))
ifhigh(true, N, cons(M, L)) -> high(N, L)
ifhigh(false, N, cons(M, L)) -> cons(M, high(N, L))
quicksort(nil) -> nil
quicksort(cons(N, L)) -> app(quicksort(low(N, L)), cons(N, quicksort(high(N, L))))
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 6
↳Size-Change Principle
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
LE(s(X), s(Y)) -> LE(X, Y)
none
innermost
|
|
trivial
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳Usable Rules (Innermost)
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
APP(cons(N, L), Y) -> APP(L, Y)
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
app(nil, Y) -> Y
app(cons(N, L), Y) -> cons(N, app(L, Y))
low(N, nil) -> nil
low(N, cons(M, L)) -> iflow(le(M, N), N, cons(M, L))
iflow(true, N, cons(M, L)) -> cons(M, low(N, L))
iflow(false, N, cons(M, L)) -> low(N, L)
high(N, nil) -> nil
high(N, cons(M, L)) -> ifhigh(le(M, N), N, cons(M, L))
ifhigh(true, N, cons(M, L)) -> high(N, L)
ifhigh(false, N, cons(M, L)) -> cons(M, high(N, L))
quicksort(nil) -> nil
quicksort(cons(N, L)) -> app(quicksort(low(N, L)), cons(N, quicksort(high(N, L))))
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 7
↳Size-Change Principle
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
APP(cons(N, L), Y) -> APP(L, Y)
none
innermost
|
|
trivial
cons(x1, x2) -> cons(x1, x2)
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳Usable Rules (Innermost)
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
IFLOW(false, N, cons(M, L)) -> LOW(N, L)
IFLOW(true, N, cons(M, L)) -> LOW(N, L)
LOW(N, cons(M, L)) -> IFLOW(le(M, N), N, cons(M, L))
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
app(nil, Y) -> Y
app(cons(N, L), Y) -> cons(N, app(L, Y))
low(N, nil) -> nil
low(N, cons(M, L)) -> iflow(le(M, N), N, cons(M, L))
iflow(true, N, cons(M, L)) -> cons(M, low(N, L))
iflow(false, N, cons(M, L)) -> low(N, L)
high(N, nil) -> nil
high(N, cons(M, L)) -> ifhigh(le(M, N), N, cons(M, L))
ifhigh(true, N, cons(M, L)) -> high(N, L)
ifhigh(false, N, cons(M, L)) -> cons(M, high(N, L))
quicksort(nil) -> nil
quicksort(cons(N, L)) -> app(quicksort(low(N, L)), cons(N, quicksort(high(N, L))))
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 8
↳Size-Change Principle
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
IFLOW(false, N, cons(M, L)) -> LOW(N, L)
IFLOW(true, N, cons(M, L)) -> LOW(N, L)
LOW(N, cons(M, L)) -> IFLOW(le(M, N), N, cons(M, L))
le(s(X), 0) -> false
le(0, Y) -> true
le(s(X), s(Y)) -> le(X, Y)
innermost
|
|
|
|
trivial
cons(x1, x2) -> cons(x1, x2)
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳Usable Rules (Innermost)
→DP Problem 5
↳UsableRules
IFHIGH(false, N, cons(M, L)) -> HIGH(N, L)
IFHIGH(true, N, cons(M, L)) -> HIGH(N, L)
HIGH(N, cons(M, L)) -> IFHIGH(le(M, N), N, cons(M, L))
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
app(nil, Y) -> Y
app(cons(N, L), Y) -> cons(N, app(L, Y))
low(N, nil) -> nil
low(N, cons(M, L)) -> iflow(le(M, N), N, cons(M, L))
iflow(true, N, cons(M, L)) -> cons(M, low(N, L))
iflow(false, N, cons(M, L)) -> low(N, L)
high(N, nil) -> nil
high(N, cons(M, L)) -> ifhigh(le(M, N), N, cons(M, L))
ifhigh(true, N, cons(M, L)) -> high(N, L)
ifhigh(false, N, cons(M, L)) -> cons(M, high(N, L))
quicksort(nil) -> nil
quicksort(cons(N, L)) -> app(quicksort(low(N, L)), cons(N, quicksort(high(N, L))))
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 9
↳Size-Change Principle
→DP Problem 5
↳UsableRules
IFHIGH(false, N, cons(M, L)) -> HIGH(N, L)
IFHIGH(true, N, cons(M, L)) -> HIGH(N, L)
HIGH(N, cons(M, L)) -> IFHIGH(le(M, N), N, cons(M, L))
le(s(X), 0) -> false
le(0, Y) -> true
le(s(X), s(Y)) -> le(X, Y)
innermost
|
|
|
|
trivial
cons(x1, x2) -> cons(x1, x2)
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳Usable Rules (Innermost)
QUICKSORT(cons(N, L)) -> QUICKSORT(high(N, L))
QUICKSORT(cons(N, L)) -> QUICKSORT(low(N, L))
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
app(nil, Y) -> Y
app(cons(N, L), Y) -> cons(N, app(L, Y))
low(N, nil) -> nil
low(N, cons(M, L)) -> iflow(le(M, N), N, cons(M, L))
iflow(true, N, cons(M, L)) -> cons(M, low(N, L))
iflow(false, N, cons(M, L)) -> low(N, L)
high(N, nil) -> nil
high(N, cons(M, L)) -> ifhigh(le(M, N), N, cons(M, L))
ifhigh(true, N, cons(M, L)) -> high(N, L)
ifhigh(false, N, cons(M, L)) -> cons(M, high(N, L))
quicksort(nil) -> nil
quicksort(cons(N, L)) -> app(quicksort(low(N, L)), cons(N, quicksort(high(N, L))))
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 10
↳Negative Polynomial Order
QUICKSORT(cons(N, L)) -> QUICKSORT(high(N, L))
QUICKSORT(cons(N, L)) -> QUICKSORT(low(N, L))
high(N, nil) -> nil
high(N, cons(M, L)) -> ifhigh(le(M, N), N, cons(M, L))
ifhigh(true, N, cons(M, L)) -> high(N, L)
ifhigh(false, N, cons(M, L)) -> cons(M, high(N, L))
le(s(X), 0) -> false
le(0, Y) -> true
le(s(X), s(Y)) -> le(X, Y)
iflow(false, N, cons(M, L)) -> low(N, L)
iflow(true, N, cons(M, L)) -> cons(M, low(N, L))
low(N, nil) -> nil
low(N, cons(M, L)) -> iflow(le(M, N), N, cons(M, L))
innermost
QUICKSORT(cons(N, L)) -> QUICKSORT(high(N, L))
QUICKSORT(cons(N, L)) -> QUICKSORT(low(N, L))
high(N, nil) -> nil
high(N, cons(M, L)) -> ifhigh(le(M, N), N, cons(M, L))
ifhigh(true, N, cons(M, L)) -> high(N, L)
ifhigh(false, N, cons(M, L)) -> cons(M, high(N, L))
le(s(X), 0) -> false
le(0, Y) -> true
le(s(X), s(Y)) -> le(X, Y)
iflow(false, N, cons(M, L)) -> low(N, L)
iflow(true, N, cons(M, L)) -> cons(M, low(N, L))
low(N, nil) -> nil
low(N, cons(M, L)) -> iflow(le(M, N), N, cons(M, L))
POL( QUICKSORT(x1) ) = x1
POL( cons(x1, x2) ) = x2 + 1
POL( high(x1, x2) ) = x2
POL( low(x1, x2) ) = x2
POL( nil ) = 0
POL( ifhigh(x1, ..., x3) ) = x3
POL( le(x1, x2) ) = 0
POL( false ) = 0
POL( true ) = 0
POL( iflow(x1, ..., x3) ) = x3
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 10
↳Neg POLO
...
→DP Problem 11
↳Dependency Graph
high(N, nil) -> nil
high(N, cons(M, L)) -> ifhigh(le(M, N), N, cons(M, L))
ifhigh(true, N, cons(M, L)) -> high(N, L)
ifhigh(false, N, cons(M, L)) -> cons(M, high(N, L))
le(s(X), 0) -> false
le(0, Y) -> true
le(s(X), s(Y)) -> le(X, Y)
iflow(false, N, cons(M, L)) -> low(N, L)
iflow(true, N, cons(M, L)) -> cons(M, low(N, L))
low(N, nil) -> nil
low(N, cons(M, L)) -> iflow(le(M, N), N, cons(M, L))
innermost