R
↳Dependency Pair Analysis
LE(s(X), s(Y)) -> LE(X, Y)
APP(cons(N, L), Y) -> APP(L, Y)
LOW(N, cons(M, L)) -> IFLOW(le(M, N), N, cons(M, L))
LOW(N, cons(M, L)) -> LE(M, N)
IFLOW(true, N, cons(M, L)) -> LOW(N, L)
IFLOW(false, N, cons(M, L)) -> LOW(N, L)
HIGH(N, cons(M, L)) -> IFHIGH(le(M, N), N, cons(M, L))
HIGH(N, cons(M, L)) -> LE(M, N)
IFHIGH(true, N, cons(M, L)) -> HIGH(N, L)
IFHIGH(false, N, cons(M, L)) -> HIGH(N, L)
QUICKSORT(cons(N, L)) -> APP(quicksort(low(N, L)), cons(N, quicksort(high(N, L))))
QUICKSORT(cons(N, L)) -> QUICKSORT(low(N, L))
QUICKSORT(cons(N, L)) -> LOW(N, L)
QUICKSORT(cons(N, L)) -> QUICKSORT(high(N, L))
QUICKSORT(cons(N, L)) -> HIGH(N, L)
R
↳DPs
→DP Problem 1
↳Argument Filtering and Ordering
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 5
↳AFS
LE(s(X), s(Y)) -> LE(X, Y)
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
app(nil, Y) -> Y
app(cons(N, L), Y) -> cons(N, app(L, Y))
low(N, nil) -> nil
low(N, cons(M, L)) -> iflow(le(M, N), N, cons(M, L))
iflow(true, N, cons(M, L)) -> cons(M, low(N, L))
iflow(false, N, cons(M, L)) -> low(N, L)
high(N, nil) -> nil
high(N, cons(M, L)) -> ifhigh(le(M, N), N, cons(M, L))
ifhigh(true, N, cons(M, L)) -> high(N, L)
ifhigh(false, N, cons(M, L)) -> cons(M, high(N, L))
quicksort(nil) -> nil
quicksort(cons(N, L)) -> app(quicksort(low(N, L)), cons(N, quicksort(high(N, L))))
innermost
LE(s(X), s(Y)) -> LE(X, Y)
POL(LE(x1, x2)) = x1 + x2 POL(s(x1)) = 1 + x1
LE(x1, x2) -> LE(x1, x2)
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 6
↳Dependency Graph
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 5
↳AFS
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
app(nil, Y) -> Y
app(cons(N, L), Y) -> cons(N, app(L, Y))
low(N, nil) -> nil
low(N, cons(M, L)) -> iflow(le(M, N), N, cons(M, L))
iflow(true, N, cons(M, L)) -> cons(M, low(N, L))
iflow(false, N, cons(M, L)) -> low(N, L)
high(N, nil) -> nil
high(N, cons(M, L)) -> ifhigh(le(M, N), N, cons(M, L))
ifhigh(true, N, cons(M, L)) -> high(N, L)
ifhigh(false, N, cons(M, L)) -> cons(M, high(N, L))
quicksort(nil) -> nil
quicksort(cons(N, L)) -> app(quicksort(low(N, L)), cons(N, quicksort(high(N, L))))
innermost
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳Argument Filtering and Ordering
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 5
↳AFS
APP(cons(N, L), Y) -> APP(L, Y)
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
app(nil, Y) -> Y
app(cons(N, L), Y) -> cons(N, app(L, Y))
low(N, nil) -> nil
low(N, cons(M, L)) -> iflow(le(M, N), N, cons(M, L))
iflow(true, N, cons(M, L)) -> cons(M, low(N, L))
iflow(false, N, cons(M, L)) -> low(N, L)
high(N, nil) -> nil
high(N, cons(M, L)) -> ifhigh(le(M, N), N, cons(M, L))
ifhigh(true, N, cons(M, L)) -> high(N, L)
ifhigh(false, N, cons(M, L)) -> cons(M, high(N, L))
quicksort(nil) -> nil
quicksort(cons(N, L)) -> app(quicksort(low(N, L)), cons(N, quicksort(high(N, L))))
innermost
APP(cons(N, L), Y) -> APP(L, Y)
POL(cons(x1, x2)) = 1 + x1 + x2 POL(APP(x1, x2)) = x1 + x2
APP(x1, x2) -> APP(x1, x2)
cons(x1, x2) -> cons(x1, x2)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 7
↳Dependency Graph
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 5
↳AFS
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
app(nil, Y) -> Y
app(cons(N, L), Y) -> cons(N, app(L, Y))
low(N, nil) -> nil
low(N, cons(M, L)) -> iflow(le(M, N), N, cons(M, L))
iflow(true, N, cons(M, L)) -> cons(M, low(N, L))
iflow(false, N, cons(M, L)) -> low(N, L)
high(N, nil) -> nil
high(N, cons(M, L)) -> ifhigh(le(M, N), N, cons(M, L))
ifhigh(true, N, cons(M, L)) -> high(N, L)
ifhigh(false, N, cons(M, L)) -> cons(M, high(N, L))
quicksort(nil) -> nil
quicksort(cons(N, L)) -> app(quicksort(low(N, L)), cons(N, quicksort(high(N, L))))
innermost
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳Argument Filtering and Ordering
→DP Problem 4
↳AFS
→DP Problem 5
↳AFS
IFLOW(false, N, cons(M, L)) -> LOW(N, L)
IFLOW(true, N, cons(M, L)) -> LOW(N, L)
LOW(N, cons(M, L)) -> IFLOW(le(M, N), N, cons(M, L))
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
app(nil, Y) -> Y
app(cons(N, L), Y) -> cons(N, app(L, Y))
low(N, nil) -> nil
low(N, cons(M, L)) -> iflow(le(M, N), N, cons(M, L))
iflow(true, N, cons(M, L)) -> cons(M, low(N, L))
iflow(false, N, cons(M, L)) -> low(N, L)
high(N, nil) -> nil
high(N, cons(M, L)) -> ifhigh(le(M, N), N, cons(M, L))
ifhigh(true, N, cons(M, L)) -> high(N, L)
ifhigh(false, N, cons(M, L)) -> cons(M, high(N, L))
quicksort(nil) -> nil
quicksort(cons(N, L)) -> app(quicksort(low(N, L)), cons(N, quicksort(high(N, L))))
innermost
IFLOW(false, N, cons(M, L)) -> LOW(N, L)
IFLOW(true, N, cons(M, L)) -> LOW(N, L)
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
POL(LOW(x1, x2)) = x1 + x2 POL(cons(x1, x2)) = 1 + x1 + x2 POL(false) = 0 POL(true) = 0 POL(IFLOW(x1, x2, x3)) = x1 + x2 + x3 POL(le) = 0
IFLOW(x1, x2, x3) -> IFLOW(x1, x2, x3)
LOW(x1, x2) -> LOW(x1, x2)
cons(x1, x2) -> cons(x1, x2)
le(x1, x2) -> le
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 8
↳Dependency Graph
→DP Problem 4
↳AFS
→DP Problem 5
↳AFS
LOW(N, cons(M, L)) -> IFLOW(le(M, N), N, cons(M, L))
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
app(nil, Y) -> Y
app(cons(N, L), Y) -> cons(N, app(L, Y))
low(N, nil) -> nil
low(N, cons(M, L)) -> iflow(le(M, N), N, cons(M, L))
iflow(true, N, cons(M, L)) -> cons(M, low(N, L))
iflow(false, N, cons(M, L)) -> low(N, L)
high(N, nil) -> nil
high(N, cons(M, L)) -> ifhigh(le(M, N), N, cons(M, L))
ifhigh(true, N, cons(M, L)) -> high(N, L)
ifhigh(false, N, cons(M, L)) -> cons(M, high(N, L))
quicksort(nil) -> nil
quicksort(cons(N, L)) -> app(quicksort(low(N, L)), cons(N, quicksort(high(N, L))))
innermost
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳Argument Filtering and Ordering
→DP Problem 5
↳AFS
IFHIGH(false, N, cons(M, L)) -> HIGH(N, L)
IFHIGH(true, N, cons(M, L)) -> HIGH(N, L)
HIGH(N, cons(M, L)) -> IFHIGH(le(M, N), N, cons(M, L))
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
app(nil, Y) -> Y
app(cons(N, L), Y) -> cons(N, app(L, Y))
low(N, nil) -> nil
low(N, cons(M, L)) -> iflow(le(M, N), N, cons(M, L))
iflow(true, N, cons(M, L)) -> cons(M, low(N, L))
iflow(false, N, cons(M, L)) -> low(N, L)
high(N, nil) -> nil
high(N, cons(M, L)) -> ifhigh(le(M, N), N, cons(M, L))
ifhigh(true, N, cons(M, L)) -> high(N, L)
ifhigh(false, N, cons(M, L)) -> cons(M, high(N, L))
quicksort(nil) -> nil
quicksort(cons(N, L)) -> app(quicksort(low(N, L)), cons(N, quicksort(high(N, L))))
innermost
HIGH(N, cons(M, L)) -> IFHIGH(le(M, N), N, cons(M, L))
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
POL(IFHIGH(x1, x2, x3)) = x1 + x2 + x3 POL(cons(x1, x2)) = 1 + x1 + x2 POL(false) = 0 POL(HIGH(x1, x2)) = 1 + x1 + x2 POL(true) = 0 POL(le) = 0
HIGH(x1, x2) -> HIGH(x1, x2)
IFHIGH(x1, x2, x3) -> IFHIGH(x1, x2, x3)
cons(x1, x2) -> cons(x1, x2)
le(x1, x2) -> le
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 9
↳Dependency Graph
→DP Problem 5
↳AFS
IFHIGH(false, N, cons(M, L)) -> HIGH(N, L)
IFHIGH(true, N, cons(M, L)) -> HIGH(N, L)
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
app(nil, Y) -> Y
app(cons(N, L), Y) -> cons(N, app(L, Y))
low(N, nil) -> nil
low(N, cons(M, L)) -> iflow(le(M, N), N, cons(M, L))
iflow(true, N, cons(M, L)) -> cons(M, low(N, L))
iflow(false, N, cons(M, L)) -> low(N, L)
high(N, nil) -> nil
high(N, cons(M, L)) -> ifhigh(le(M, N), N, cons(M, L))
ifhigh(true, N, cons(M, L)) -> high(N, L)
ifhigh(false, N, cons(M, L)) -> cons(M, high(N, L))
quicksort(nil) -> nil
quicksort(cons(N, L)) -> app(quicksort(low(N, L)), cons(N, quicksort(high(N, L))))
innermost
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 5
↳Argument Filtering and Ordering
QUICKSORT(cons(N, L)) -> QUICKSORT(high(N, L))
QUICKSORT(cons(N, L)) -> QUICKSORT(low(N, L))
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
app(nil, Y) -> Y
app(cons(N, L), Y) -> cons(N, app(L, Y))
low(N, nil) -> nil
low(N, cons(M, L)) -> iflow(le(M, N), N, cons(M, L))
iflow(true, N, cons(M, L)) -> cons(M, low(N, L))
iflow(false, N, cons(M, L)) -> low(N, L)
high(N, nil) -> nil
high(N, cons(M, L)) -> ifhigh(le(M, N), N, cons(M, L))
ifhigh(true, N, cons(M, L)) -> high(N, L)
ifhigh(false, N, cons(M, L)) -> cons(M, high(N, L))
quicksort(nil) -> nil
quicksort(cons(N, L)) -> app(quicksort(low(N, L)), cons(N, quicksort(high(N, L))))
innermost
QUICKSORT(cons(N, L)) -> QUICKSORT(high(N, L))
QUICKSORT(cons(N, L)) -> QUICKSORT(low(N, L))
high(N, nil) -> nil
high(N, cons(M, L)) -> ifhigh(le(M, N), N, cons(M, L))
ifhigh(true, N, cons(M, L)) -> high(N, L)
ifhigh(false, N, cons(M, L)) -> cons(M, high(N, L))
iflow(true, N, cons(M, L)) -> cons(M, low(N, L))
iflow(false, N, cons(M, L)) -> low(N, L)
low(N, nil) -> nil
low(N, cons(M, L)) -> iflow(le(M, N), N, cons(M, L))
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
POL(QUICKSORT(x1)) = 1 + x1 POL(iflow(x1, x2, x3)) = x1 + x2 + x3 POL(cons(x1, x2)) = 1 + x1 + x2 POL(false) = 0 POL(high(x1, x2)) = x1 + x2 POL(low(x1, x2)) = x1 + x2 POL(nil) = 0 POL(true) = 0 POL(ifhigh(x1, x2, x3)) = x1 + x2 + x3 POL(le) = 0
QUICKSORT(x1) -> QUICKSORT(x1)
cons(x1, x2) -> cons(x1, x2)
high(x1, x2) -> high(x1, x2)
low(x1, x2) -> low(x1, x2)
ifhigh(x1, x2, x3) -> ifhigh(x1, x2, x3)
le(x1, x2) -> le
iflow(x1, x2, x3) -> iflow(x1, x2, x3)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 5
↳AFS
→DP Problem 10
↳Dependency Graph
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
app(nil, Y) -> Y
app(cons(N, L), Y) -> cons(N, app(L, Y))
low(N, nil) -> nil
low(N, cons(M, L)) -> iflow(le(M, N), N, cons(M, L))
iflow(true, N, cons(M, L)) -> cons(M, low(N, L))
iflow(false, N, cons(M, L)) -> low(N, L)
high(N, nil) -> nil
high(N, cons(M, L)) -> ifhigh(le(M, N), N, cons(M, L))
ifhigh(true, N, cons(M, L)) -> high(N, L)
ifhigh(false, N, cons(M, L)) -> cons(M, high(N, L))
quicksort(nil) -> nil
quicksort(cons(N, L)) -> app(quicksort(low(N, L)), cons(N, quicksort(high(N, L))))
innermost