R
↳Dependency Pair Analysis
ACKIN(s(X), s(Y)) -> U21(ackin(s(X), Y), X)
ACKIN(s(X), s(Y)) -> ACKIN(s(X), Y)
U21(ackout(X), Y) -> ACKIN(Y, X)
R
↳DPs
→DP Problem 1
↳Narrowing Transformation
ACKIN(s(X), s(Y)) -> ACKIN(s(X), Y)
U21(ackout(X), Y) -> ACKIN(Y, X)
ACKIN(s(X), s(Y)) -> U21(ackin(s(X), Y), X)
ackin(s(X), s(Y)) -> u21(ackin(s(X), Y), X)
u21(ackout(X), Y) -> u22(ackin(Y, X))
innermost
one new Dependency Pair is created:
ACKIN(s(X), s(Y)) -> U21(ackin(s(X), Y), X)
ACKIN(s(X''), s(s(Y''))) -> U21(u21(ackin(s(X''), Y''), X''), X'')
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Narrowing Transformation
U21(ackout(X), Y) -> ACKIN(Y, X)
ACKIN(s(X''), s(s(Y''))) -> U21(u21(ackin(s(X''), Y''), X''), X'')
ACKIN(s(X), s(Y)) -> ACKIN(s(X), Y)
ackin(s(X), s(Y)) -> u21(ackin(s(X), Y), X)
u21(ackout(X), Y) -> u22(ackin(Y, X))
innermost
one new Dependency Pair is created:
ACKIN(s(X''), s(s(Y''))) -> U21(u21(ackin(s(X''), Y''), X''), X'')
ACKIN(s(X'''), s(s(s(Y')))) -> U21(u21(u21(ackin(s(X'''), Y'), X'''), X'''), X''')
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Nar
...
→DP Problem 3
↳Forward Instantiation Transformation
ACKIN(s(X'''), s(s(s(Y')))) -> U21(u21(u21(ackin(s(X'''), Y'), X'''), X'''), X''')
ACKIN(s(X), s(Y)) -> ACKIN(s(X), Y)
U21(ackout(X), Y) -> ACKIN(Y, X)
ackin(s(X), s(Y)) -> u21(ackin(s(X), Y), X)
u21(ackout(X), Y) -> u22(ackin(Y, X))
innermost
two new Dependency Pairs are created:
ACKIN(s(X), s(Y)) -> ACKIN(s(X), Y)
ACKIN(s(X''), s(s(Y''))) -> ACKIN(s(X''), s(Y''))
ACKIN(s(X'), s(s(s(s(Y'''))))) -> ACKIN(s(X'), s(s(s(Y'''))))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Nar
...
→DP Problem 4
↳Forward Instantiation Transformation
ACKIN(s(X'), s(s(s(s(Y'''))))) -> ACKIN(s(X'), s(s(s(Y'''))))
ACKIN(s(X''), s(s(Y''))) -> ACKIN(s(X''), s(Y''))
U21(ackout(X), Y) -> ACKIN(Y, X)
ACKIN(s(X'''), s(s(s(Y')))) -> U21(u21(u21(ackin(s(X'''), Y'), X'''), X'''), X''')
ackin(s(X), s(Y)) -> u21(ackin(s(X), Y), X)
u21(ackout(X), Y) -> u22(ackin(Y, X))
innermost
three new Dependency Pairs are created:
U21(ackout(X), Y) -> ACKIN(Y, X)
U21(ackout(s(s(s(Y''')))), s(X''''')) -> ACKIN(s(X'''''), s(s(s(Y'''))))
U21(ackout(s(s(Y''''))), s(X'''')) -> ACKIN(s(X''''), s(s(Y'''')))
U21(ackout(s(s(s(s(Y'''''))))), s(X''')) -> ACKIN(s(X'''), s(s(s(s(Y''''')))))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Nar
...
→DP Problem 5
↳Forward Instantiation Transformation
U21(ackout(s(s(s(s(Y'''''))))), s(X''')) -> ACKIN(s(X'''), s(s(s(s(Y''''')))))
U21(ackout(s(s(Y''''))), s(X'''')) -> ACKIN(s(X''''), s(s(Y'''')))
ACKIN(s(X''), s(s(Y''))) -> ACKIN(s(X''), s(Y''))
U21(ackout(s(s(s(Y''')))), s(X''''')) -> ACKIN(s(X'''''), s(s(s(Y'''))))
ACKIN(s(X'''), s(s(s(Y')))) -> U21(u21(u21(ackin(s(X'''), Y'), X'''), X'''), X''')
ACKIN(s(X'), s(s(s(s(Y'''))))) -> ACKIN(s(X'), s(s(s(Y'''))))
ackin(s(X), s(Y)) -> u21(ackin(s(X), Y), X)
u21(ackout(X), Y) -> u22(ackin(Y, X))
innermost
no new Dependency Pairs are created.
ACKIN(s(X'''), s(s(s(Y')))) -> U21(u21(u21(ackin(s(X'''), Y'), X'''), X'''), X''')
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Nar
...
→DP Problem 6
↳Forward Instantiation Transformation
ACKIN(s(X'), s(s(s(s(Y'''))))) -> ACKIN(s(X'), s(s(s(Y'''))))
ACKIN(s(X''), s(s(Y''))) -> ACKIN(s(X''), s(Y''))
ackin(s(X), s(Y)) -> u21(ackin(s(X), Y), X)
u21(ackout(X), Y) -> u22(ackin(Y, X))
innermost
two new Dependency Pairs are created:
ACKIN(s(X''), s(s(Y''))) -> ACKIN(s(X''), s(Y''))
ACKIN(s(X''''), s(s(s(Y'''')))) -> ACKIN(s(X''''), s(s(Y'''')))
ACKIN(s(X''''), s(s(s(s(s(Y''''')))))) -> ACKIN(s(X''''), s(s(s(s(Y''''')))))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Nar
...
→DP Problem 7
↳Argument Filtering and Ordering
ACKIN(s(X''''), s(s(s(s(s(Y''''')))))) -> ACKIN(s(X''''), s(s(s(s(Y''''')))))
ACKIN(s(X''''), s(s(s(Y'''')))) -> ACKIN(s(X''''), s(s(Y'''')))
ACKIN(s(X'), s(s(s(s(Y'''))))) -> ACKIN(s(X'), s(s(s(Y'''))))
ackin(s(X), s(Y)) -> u21(ackin(s(X), Y), X)
u21(ackout(X), Y) -> u22(ackin(Y, X))
innermost
ACKIN(s(X''''), s(s(s(s(s(Y''''')))))) -> ACKIN(s(X''''), s(s(s(s(Y''''')))))
ACKIN(s(X''''), s(s(s(Y'''')))) -> ACKIN(s(X''''), s(s(Y'''')))
ACKIN(s(X'), s(s(s(s(Y'''))))) -> ACKIN(s(X'), s(s(s(Y'''))))
POL(s(x1)) = 1 + x1 POL(ACKIN(x1, x2)) = 1 + x1 + x2
ACKIN(x1, x2) -> ACKIN(x1, x2)
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Nar
...
→DP Problem 8
↳Dependency Graph
ackin(s(X), s(Y)) -> u21(ackin(s(X), Y), X)
u21(ackout(X), Y) -> u22(ackin(Y, X))
innermost