Term Rewriting System R:
[X, ALPHA, BETA]
dx(X) -> one
dx(a) -> zero
dx(plus(ALPHA, BETA)) -> plus(dx(ALPHA), dx(BETA))
dx(times(ALPHA, BETA)) -> plus(times(BETA, dx(ALPHA)), times(ALPHA, dx(BETA)))
dx(minus(ALPHA, BETA)) -> minus(dx(ALPHA), dx(BETA))
dx(neg(ALPHA)) -> neg(dx(ALPHA))
dx(div(ALPHA, BETA)) -> minus(div(dx(ALPHA), BETA), times(ALPHA, div(dx(BETA), exp(BETA, two))))
dx(ln(ALPHA)) -> div(dx(ALPHA), ALPHA)
dx(exp(ALPHA, BETA)) -> plus(times(BETA, times(exp(ALPHA, minus(BETA, one)), dx(ALPHA))), times(exp(ALPHA, BETA), times(ln(ALPHA), dx(BETA))))

Innermost Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

DX(plus(ALPHA, BETA)) -> DX(ALPHA)
DX(plus(ALPHA, BETA)) -> DX(BETA)
DX(times(ALPHA, BETA)) -> DX(ALPHA)
DX(times(ALPHA, BETA)) -> DX(BETA)
DX(minus(ALPHA, BETA)) -> DX(ALPHA)
DX(minus(ALPHA, BETA)) -> DX(BETA)
DX(neg(ALPHA)) -> DX(ALPHA)
DX(div(ALPHA, BETA)) -> DX(ALPHA)
DX(div(ALPHA, BETA)) -> DX(BETA)
DX(ln(ALPHA)) -> DX(ALPHA)
DX(exp(ALPHA, BETA)) -> DX(ALPHA)
DX(exp(ALPHA, BETA)) -> DX(BETA)

Furthermore, R contains one SCC.


   R
DPs
       →DP Problem 1
Usable Rules (Innermost)


Dependency Pairs:

DX(exp(ALPHA, BETA)) -> DX(BETA)
DX(exp(ALPHA, BETA)) -> DX(ALPHA)
DX(ln(ALPHA)) -> DX(ALPHA)
DX(div(ALPHA, BETA)) -> DX(BETA)
DX(div(ALPHA, BETA)) -> DX(ALPHA)
DX(neg(ALPHA)) -> DX(ALPHA)
DX(minus(ALPHA, BETA)) -> DX(BETA)
DX(minus(ALPHA, BETA)) -> DX(ALPHA)
DX(times(ALPHA, BETA)) -> DX(BETA)
DX(times(ALPHA, BETA)) -> DX(ALPHA)
DX(plus(ALPHA, BETA)) -> DX(BETA)
DX(plus(ALPHA, BETA)) -> DX(ALPHA)


Rules:


dx(X) -> one
dx(a) -> zero
dx(plus(ALPHA, BETA)) -> plus(dx(ALPHA), dx(BETA))
dx(times(ALPHA, BETA)) -> plus(times(BETA, dx(ALPHA)), times(ALPHA, dx(BETA)))
dx(minus(ALPHA, BETA)) -> minus(dx(ALPHA), dx(BETA))
dx(neg(ALPHA)) -> neg(dx(ALPHA))
dx(div(ALPHA, BETA)) -> minus(div(dx(ALPHA), BETA), times(ALPHA, div(dx(BETA), exp(BETA, two))))
dx(ln(ALPHA)) -> div(dx(ALPHA), ALPHA)
dx(exp(ALPHA, BETA)) -> plus(times(BETA, times(exp(ALPHA, minus(BETA, one)), dx(ALPHA))), times(exp(ALPHA, BETA), times(ln(ALPHA), dx(BETA))))


Strategy:

innermost




As we are in the innermost case, we can delete all 9 non-usable-rules.


   R
DPs
       →DP Problem 1
UsableRules
           →DP Problem 2
Size-Change Principle


Dependency Pairs:

DX(exp(ALPHA, BETA)) -> DX(BETA)
DX(exp(ALPHA, BETA)) -> DX(ALPHA)
DX(ln(ALPHA)) -> DX(ALPHA)
DX(div(ALPHA, BETA)) -> DX(BETA)
DX(div(ALPHA, BETA)) -> DX(ALPHA)
DX(neg(ALPHA)) -> DX(ALPHA)
DX(minus(ALPHA, BETA)) -> DX(BETA)
DX(minus(ALPHA, BETA)) -> DX(ALPHA)
DX(times(ALPHA, BETA)) -> DX(BETA)
DX(times(ALPHA, BETA)) -> DX(ALPHA)
DX(plus(ALPHA, BETA)) -> DX(BETA)
DX(plus(ALPHA, BETA)) -> DX(ALPHA)


Rule:

none


Strategy:

innermost




We number the DPs as follows:
  1. DX(exp(ALPHA, BETA)) -> DX(BETA)
  2. DX(exp(ALPHA, BETA)) -> DX(ALPHA)
  3. DX(ln(ALPHA)) -> DX(ALPHA)
  4. DX(div(ALPHA, BETA)) -> DX(BETA)
  5. DX(div(ALPHA, BETA)) -> DX(ALPHA)
  6. DX(neg(ALPHA)) -> DX(ALPHA)
  7. DX(minus(ALPHA, BETA)) -> DX(BETA)
  8. DX(minus(ALPHA, BETA)) -> DX(ALPHA)
  9. DX(times(ALPHA, BETA)) -> DX(BETA)
  10. DX(times(ALPHA, BETA)) -> DX(ALPHA)
  11. DX(plus(ALPHA, BETA)) -> DX(BETA)
  12. DX(plus(ALPHA, BETA)) -> DX(ALPHA)
and get the following Size-Change Graph(s):
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} , {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}
1>1

which lead(s) to this/these maximal multigraph(s):
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} , {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}
1>1

DP: empty set
Oriented Rules: none

We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial

with Argument Filtering System:
exp(x1, x2) -> exp(x1, x2)
plus(x1, x2) -> plus(x1, x2)
times(x1, x2) -> times(x1, x2)
neg(x1) -> neg(x1)
minus(x1, x2) -> minus(x1, x2)
div(x1, x2) -> div(x1, x2)
ln(x1) -> ln(x1)

We obtain no new DP problems.

Innermost Termination of R successfully shown.
Duration:
0:00 minutes