R
↳Dependency Pair Analysis
F(g(X)) -> F(f(X))
F(g(X)) -> F(X)
R
↳DPs
→DP Problem 1
↳Narrowing Transformation
F(g(X)) -> F(X)
F(g(X)) -> F(f(X))
f(g(X)) -> g(f(f(X)))
f(h(X)) -> h(g(X))
innermost
two new Dependency Pairs are created:
F(g(X)) -> F(f(X))
F(g(g(X''))) -> F(g(f(f(X''))))
F(g(h(X''))) -> F(h(g(X'')))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Forward Instantiation Transformation
F(g(g(X''))) -> F(g(f(f(X''))))
F(g(X)) -> F(X)
f(g(X)) -> g(f(f(X)))
f(h(X)) -> h(g(X))
innermost
two new Dependency Pairs are created:
F(g(X)) -> F(X)
F(g(g(X''))) -> F(g(X''))
F(g(g(g(X'''')))) -> F(g(g(X'''')))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳FwdInst
...
→DP Problem 3
↳Narrowing Transformation
F(g(g(g(X'''')))) -> F(g(g(X'''')))
F(g(g(X''))) -> F(g(X''))
F(g(g(X''))) -> F(g(f(f(X''))))
f(g(X)) -> g(f(f(X)))
f(h(X)) -> h(g(X))
innermost
two new Dependency Pairs are created:
F(g(g(X''))) -> F(g(f(f(X''))))
F(g(g(g(X')))) -> F(g(f(g(f(f(X'))))))
F(g(g(h(X')))) -> F(g(f(h(g(X')))))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳FwdInst
...
→DP Problem 4
↳Rewriting Transformation
F(g(g(h(X')))) -> F(g(f(h(g(X')))))
F(g(g(g(X')))) -> F(g(f(g(f(f(X'))))))
F(g(g(X''))) -> F(g(X''))
F(g(g(g(X'''')))) -> F(g(g(X'''')))
f(g(X)) -> g(f(f(X)))
f(h(X)) -> h(g(X))
innermost
one new Dependency Pair is created:
F(g(g(g(X')))) -> F(g(f(g(f(f(X'))))))
F(g(g(g(X')))) -> F(g(g(f(f(f(f(X')))))))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳FwdInst
...
→DP Problem 5
↳Rewriting Transformation
F(g(g(g(X')))) -> F(g(g(f(f(f(f(X')))))))
F(g(g(g(X'''')))) -> F(g(g(X'''')))
F(g(g(X''))) -> F(g(X''))
F(g(g(h(X')))) -> F(g(f(h(g(X')))))
f(g(X)) -> g(f(f(X)))
f(h(X)) -> h(g(X))
innermost
one new Dependency Pair is created:
F(g(g(h(X')))) -> F(g(f(h(g(X')))))
F(g(g(h(X')))) -> F(g(h(g(g(X')))))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳FwdInst
...
→DP Problem 6
↳Forward Instantiation Transformation
F(g(g(g(X'''')))) -> F(g(g(X'''')))
F(g(g(X''))) -> F(g(X''))
F(g(g(g(X')))) -> F(g(g(f(f(f(f(X')))))))
f(g(X)) -> g(f(f(X)))
f(h(X)) -> h(g(X))
innermost
three new Dependency Pairs are created:
F(g(g(X''))) -> F(g(X''))
F(g(g(g(X'''')))) -> F(g(g(X'''')))
F(g(g(g(g(X''''''))))) -> F(g(g(g(X''''''))))
F(g(g(g(g(X''''))))) -> F(g(g(g(X''''))))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳FwdInst
...
→DP Problem 7
↳Forward Instantiation Transformation
F(g(g(g(g(X''''))))) -> F(g(g(g(X''''))))
F(g(g(g(g(X''''''))))) -> F(g(g(g(X''''''))))
F(g(g(g(X'''')))) -> F(g(g(X'''')))
F(g(g(g(X')))) -> F(g(g(f(f(f(f(X')))))))
F(g(g(g(X'''')))) -> F(g(g(X'''')))
f(g(X)) -> g(f(f(X)))
f(h(X)) -> h(g(X))
innermost
four new Dependency Pairs are created:
F(g(g(g(X'''')))) -> F(g(g(X'''')))
F(g(g(g(g(X''''''))))) -> F(g(g(g(X''''''))))
F(g(g(g(g(X'''))))) -> F(g(g(g(X'''))))
F(g(g(g(g(g(X'''''''')))))) -> F(g(g(g(g(X'''''''')))))
F(g(g(g(g(g(X'''''')))))) -> F(g(g(g(g(X'''''')))))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳FwdInst
...
→DP Problem 8
↳Polynomial Ordering
F(g(g(g(g(g(X'''''')))))) -> F(g(g(g(g(X'''''')))))
F(g(g(g(g(g(X'''''''')))))) -> F(g(g(g(g(X'''''''')))))
F(g(g(g(g(X'''))))) -> F(g(g(g(X'''))))
F(g(g(g(g(X''''''))))) -> F(g(g(g(X''''''))))
F(g(g(g(g(X''''''))))) -> F(g(g(g(X''''''))))
F(g(g(g(X'''')))) -> F(g(g(X'''')))
F(g(g(g(X')))) -> F(g(g(f(f(f(f(X')))))))
F(g(g(g(g(X''''))))) -> F(g(g(g(X''''))))
f(g(X)) -> g(f(f(X)))
f(h(X)) -> h(g(X))
innermost
F(g(g(g(g(g(X'''''')))))) -> F(g(g(g(g(X'''''')))))
F(g(g(g(g(g(X'''''''')))))) -> F(g(g(g(g(X'''''''')))))
F(g(g(g(g(X'''))))) -> F(g(g(g(X'''))))
F(g(g(g(g(X''''''))))) -> F(g(g(g(X''''''))))
F(g(g(g(X'''')))) -> F(g(g(X'''')))
F(g(g(g(X')))) -> F(g(g(f(f(f(f(X')))))))
F(g(g(g(g(X''''))))) -> F(g(g(g(X''''))))
f(g(X)) -> g(f(f(X)))
f(h(X)) -> h(g(X))
POL(g(x1)) = 1 + x1 POL(h(x1)) = 0 POL(f(x1)) = x1 POL(F(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳FwdInst
...
→DP Problem 9
↳Dependency Graph
f(g(X)) -> g(f(f(X)))
f(h(X)) -> h(g(X))
innermost