R
↳Dependency Pair Analysis
DIV(X, e) -> I(X)
DIV(div(X, Y), Z) -> DIV(Y, div(i(X), Z))
DIV(div(X, Y), Z) -> DIV(i(X), Z)
DIV(div(X, Y), Z) -> I(X)
I(div(X, Y)) -> DIV(Y, X)
R
↳DPs
→DP Problem 1
↳Argument Filtering and Ordering
DIV(div(X, Y), Z) -> DIV(i(X), Z)
DIV(div(X, Y), Z) -> DIV(Y, div(i(X), Z))
I(div(X, Y)) -> DIV(Y, X)
DIV(X, e) -> I(X)
div(X, e) -> i(X)
div(div(X, Y), Z) -> div(Y, div(i(X), Z))
i(div(X, Y)) -> div(Y, X)
innermost
DIV(X, e) -> I(X)
i(div(X, Y)) -> div(Y, X)
div(X, e) -> i(X)
div(div(X, Y), Z) -> div(Y, div(i(X), Z))
POL(I(x1)) = x1 POL(i(x1)) = x1 POL(e) = 1 POL(DIV(x1, x2)) = x1 + x2 POL(div(x1, x2)) = x1 + x2
DIV(x1, x2) -> DIV(x1, x2)
div(x1, x2) -> div(x1, x2)
i(x1) -> i(x1)
I(x1) -> I(x1)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳Dependency Graph
DIV(div(X, Y), Z) -> DIV(i(X), Z)
DIV(div(X, Y), Z) -> DIV(Y, div(i(X), Z))
I(div(X, Y)) -> DIV(Y, X)
div(X, e) -> i(X)
div(div(X, Y), Z) -> div(Y, div(i(X), Z))
i(div(X, Y)) -> div(Y, X)
innermost
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳DGraph
...
→DP Problem 3
↳Narrowing Transformation
DIV(div(X, Y), Z) -> DIV(Y, div(i(X), Z))
DIV(div(X, Y), Z) -> DIV(i(X), Z)
div(X, e) -> i(X)
div(div(X, Y), Z) -> div(Y, div(i(X), Z))
i(div(X, Y)) -> div(Y, X)
innermost
no new Dependency Pairs are created.
DIV(div(X, Y), Z) -> DIV(i(X), Z)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳DGraph
...
→DP Problem 4
↳Argument Filtering and Ordering
DIV(div(X, Y), Z) -> DIV(Y, div(i(X), Z))
div(X, e) -> i(X)
div(div(X, Y), Z) -> div(Y, div(i(X), Z))
i(div(X, Y)) -> div(Y, X)
innermost
DIV(div(X, Y), Z) -> DIV(Y, div(i(X), Z))
POL(div(x1, x2)) = 1 + x1 + x2
DIV(x1, x2) -> x1
div(x1, x2) -> div(x1, x2)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳DGraph
...
→DP Problem 5
↳Dependency Graph
div(X, e) -> i(X)
div(div(X, Y), Z) -> div(Y, div(i(X), Z))
i(div(X, Y)) -> div(Y, X)
innermost