R
↳Dependency Pair Analysis
F(a) -> F(c(a))
F(c(a)) -> F(d(b))
F(a) -> F(d(a))
F(c(b)) -> F(d(a))
E(g(X)) -> E(X)
R
↳DPs
→DP Problem 1
↳Forward Instantiation Transformation
E(g(X)) -> E(X)
f(a) -> f(c(a))
f(c(X)) -> X
f(c(a)) -> f(d(b))
f(a) -> f(d(a))
f(d(X)) -> X
f(c(b)) -> f(d(a))
e(g(X)) -> e(X)
innermost
one new Dependency Pair is created:
E(g(X)) -> E(X)
E(g(g(X''))) -> E(g(X''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Forward Instantiation Transformation
E(g(g(X''))) -> E(g(X''))
f(a) -> f(c(a))
f(c(X)) -> X
f(c(a)) -> f(d(b))
f(a) -> f(d(a))
f(d(X)) -> X
f(c(b)) -> f(d(a))
e(g(X)) -> e(X)
innermost
one new Dependency Pair is created:
E(g(g(X''))) -> E(g(X''))
E(g(g(g(X'''')))) -> E(g(g(X'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 3
↳Polynomial Ordering
E(g(g(g(X'''')))) -> E(g(g(X'''')))
f(a) -> f(c(a))
f(c(X)) -> X
f(c(a)) -> f(d(b))
f(a) -> f(d(a))
f(d(X)) -> X
f(c(b)) -> f(d(a))
e(g(X)) -> e(X)
innermost
E(g(g(g(X'''')))) -> E(g(g(X'''')))
POL(E(x1)) = 1 + x1 POL(g(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 4
↳Dependency Graph
f(a) -> f(c(a))
f(c(X)) -> X
f(c(a)) -> f(d(b))
f(a) -> f(d(a))
f(d(X)) -> X
f(c(b)) -> f(d(a))
e(g(X)) -> e(X)
innermost