R
↳Dependency Pair Analysis
MINUS(s(X), s(Y)) -> P(minus(X, Y))
MINUS(s(X), s(Y)) -> MINUS(X, Y)
DIV(s(X), s(Y)) -> DIV(minus(X, Y), s(Y))
DIV(s(X), s(Y)) -> MINUS(X, Y)
R
↳DPs
→DP Problem 1
↳Usable Rules (Innermost)
→DP Problem 2
↳UsableRules
MINUS(s(X), s(Y)) -> MINUS(X, Y)
minus(X, 0) -> X
minus(s(X), s(Y)) -> p(minus(X, Y))
p(s(X)) -> X
div(0, s(Y)) -> 0
div(s(X), s(Y)) -> s(div(minus(X, Y), s(Y)))
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 3
↳Size-Change Principle
→DP Problem 2
↳UsableRules
MINUS(s(X), s(Y)) -> MINUS(X, Y)
none
innermost
|
|
trivial
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳Usable Rules (Innermost)
DIV(s(X), s(Y)) -> DIV(minus(X, Y), s(Y))
minus(X, 0) -> X
minus(s(X), s(Y)) -> p(minus(X, Y))
p(s(X)) -> X
div(0, s(Y)) -> 0
div(s(X), s(Y)) -> s(div(minus(X, Y), s(Y)))
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 4
↳Negative Polynomial Order
DIV(s(X), s(Y)) -> DIV(minus(X, Y), s(Y))
p(s(X)) -> X
minus(X, 0) -> X
minus(s(X), s(Y)) -> p(minus(X, Y))
innermost
DIV(s(X), s(Y)) -> DIV(minus(X, Y), s(Y))
p(s(X)) -> X
minus(X, 0) -> X
minus(s(X), s(Y)) -> p(minus(X, Y))
POL( DIV(x1, x2) ) = x1
POL( s(x1) ) = x1 + 1
POL( minus(x1, x2) ) = x1
POL( p(x1) ) = x1
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 4
↳Neg POLO
...
→DP Problem 5
↳Dependency Graph
p(s(X)) -> X
minus(X, 0) -> X
minus(s(X), s(Y)) -> p(minus(X, Y))
innermost