R
↳Dependency Pair Analysis
MINUS(s(X), s(Y)) -> P(minus(X, Y))
MINUS(s(X), s(Y)) -> MINUS(X, Y)
DIV(s(X), s(Y)) -> DIV(minus(X, Y), s(Y))
DIV(s(X), s(Y)) -> MINUS(X, Y)
R
↳DPs
→DP Problem 1
↳Argument Filtering and Ordering
→DP Problem 2
↳AFS
MINUS(s(X), s(Y)) -> MINUS(X, Y)
minus(X, 0) -> X
minus(s(X), s(Y)) -> p(minus(X, Y))
p(s(X)) -> X
div(0, s(Y)) -> 0
div(s(X), s(Y)) -> s(div(minus(X, Y), s(Y)))
innermost
MINUS(s(X), s(Y)) -> MINUS(X, Y)
trivial
MINUS(x1, x2) -> MINUS(x1, x2)
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 3
↳Dependency Graph
→DP Problem 2
↳AFS
minus(X, 0) -> X
minus(s(X), s(Y)) -> p(minus(X, Y))
p(s(X)) -> X
div(0, s(Y)) -> 0
div(s(X), s(Y)) -> s(div(minus(X, Y), s(Y)))
innermost
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳Argument Filtering and Ordering
DIV(s(X), s(Y)) -> DIV(minus(X, Y), s(Y))
minus(X, 0) -> X
minus(s(X), s(Y)) -> p(minus(X, Y))
p(s(X)) -> X
div(0, s(Y)) -> 0
div(s(X), s(Y)) -> s(div(minus(X, Y), s(Y)))
innermost
DIV(s(X), s(Y)) -> DIV(minus(X, Y), s(Y))
minus(X, 0) -> X
minus(s(X), s(Y)) -> p(minus(X, Y))
p(s(X)) -> X
s > p
DIV(x1, x2) -> DIV(x1, x2)
s(x1) -> s(x1)
minus(x1, x2) -> x1
p(x1) -> p(x1)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 4
↳Dependency Graph
minus(X, 0) -> X
minus(s(X), s(Y)) -> p(minus(X, Y))
p(s(X)) -> X
div(0, s(Y)) -> 0
div(s(X), s(Y)) -> s(div(minus(X, Y), s(Y)))
innermost