Term Rewriting System R:
[X, Y, N, M]
eq(0, 0) -> true
eq(0, s(X)) -> false
eq(s(X), 0) -> false
eq(s(X), s(Y)) -> eq(X, Y)
rm(N, nil) -> nil
rm(N, add(M, X)) -> ifrm(eq(N, M), N, add(M, X))
ifrm(true, N, add(M, X)) -> rm(N, X)
ifrm(false, N, add(M, X)) -> add(M, rm(N, X))
purge(nil) -> nil
purge(add(N, X)) -> add(N, purge(rm(N, X)))

Innermost Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

EQ(s(X), s(Y)) -> EQ(X, Y)
RM(N, add(M, X)) -> IFRM(eq(N, M), N, add(M, X))
RM(N, add(M, X)) -> EQ(N, M)
IFRM(true, N, add(M, X)) -> RM(N, X)
IFRM(false, N, add(M, X)) -> RM(N, X)
PURGE(add(N, X)) -> PURGE(rm(N, X))
PURGE(add(N, X)) -> RM(N, X)

Furthermore, R contains three SCCs.


   R
DPs
       →DP Problem 1
Polynomial Ordering
       →DP Problem 2
Polo
       →DP Problem 3
Polo


Dependency Pair:

EQ(s(X), s(Y)) -> EQ(X, Y)


Rules:


eq(0, 0) -> true
eq(0, s(X)) -> false
eq(s(X), 0) -> false
eq(s(X), s(Y)) -> eq(X, Y)
rm(N, nil) -> nil
rm(N, add(M, X)) -> ifrm(eq(N, M), N, add(M, X))
ifrm(true, N, add(M, X)) -> rm(N, X)
ifrm(false, N, add(M, X)) -> add(M, rm(N, X))
purge(nil) -> nil
purge(add(N, X)) -> add(N, purge(rm(N, X)))


Strategy:

innermost




The following dependency pair can be strictly oriented:

EQ(s(X), s(Y)) -> EQ(X, Y)


There are no usable rules for innermost that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(EQ(x1, x2))=  x1  
  POL(s(x1))=  1 + x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
           →DP Problem 4
Dependency Graph
       →DP Problem 2
Polo
       →DP Problem 3
Polo


Dependency Pair:


Rules:


eq(0, 0) -> true
eq(0, s(X)) -> false
eq(s(X), 0) -> false
eq(s(X), s(Y)) -> eq(X, Y)
rm(N, nil) -> nil
rm(N, add(M, X)) -> ifrm(eq(N, M), N, add(M, X))
ifrm(true, N, add(M, X)) -> rm(N, X)
ifrm(false, N, add(M, X)) -> add(M, rm(N, X))
purge(nil) -> nil
purge(add(N, X)) -> add(N, purge(rm(N, X)))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polynomial Ordering
       →DP Problem 3
Polo


Dependency Pairs:

IFRM(false, N, add(M, X)) -> RM(N, X)
IFRM(true, N, add(M, X)) -> RM(N, X)
RM(N, add(M, X)) -> IFRM(eq(N, M), N, add(M, X))


Rules:


eq(0, 0) -> true
eq(0, s(X)) -> false
eq(s(X), 0) -> false
eq(s(X), s(Y)) -> eq(X, Y)
rm(N, nil) -> nil
rm(N, add(M, X)) -> ifrm(eq(N, M), N, add(M, X))
ifrm(true, N, add(M, X)) -> rm(N, X)
ifrm(false, N, add(M, X)) -> add(M, rm(N, X))
purge(nil) -> nil
purge(add(N, X)) -> add(N, purge(rm(N, X)))


Strategy:

innermost




The following dependency pairs can be strictly oriented:

IFRM(false, N, add(M, X)) -> RM(N, X)
IFRM(true, N, add(M, X)) -> RM(N, X)


Additionally, the following usable rules for innermost can be oriented:

eq(0, 0) -> true
eq(0, s(X)) -> false
eq(s(X), 0) -> false
eq(s(X), s(Y)) -> eq(X, Y)


Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(IFRM(x1, x2, x3))=  x3  
  POL(eq(x1, x2))=  0  
  POL(0)=  0  
  POL(false)=  0  
  POL(true)=  0  
  POL(s(x1))=  0  
  POL(RM(x1, x2))=  x2  
  POL(add(x1, x2))=  1 + x2  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
           →DP Problem 5
Dependency Graph
       →DP Problem 3
Polo


Dependency Pair:

RM(N, add(M, X)) -> IFRM(eq(N, M), N, add(M, X))


Rules:


eq(0, 0) -> true
eq(0, s(X)) -> false
eq(s(X), 0) -> false
eq(s(X), s(Y)) -> eq(X, Y)
rm(N, nil) -> nil
rm(N, add(M, X)) -> ifrm(eq(N, M), N, add(M, X))
ifrm(true, N, add(M, X)) -> rm(N, X)
ifrm(false, N, add(M, X)) -> add(M, rm(N, X))
purge(nil) -> nil
purge(add(N, X)) -> add(N, purge(rm(N, X)))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polynomial Ordering


Dependency Pair:

PURGE(add(N, X)) -> PURGE(rm(N, X))


Rules:


eq(0, 0) -> true
eq(0, s(X)) -> false
eq(s(X), 0) -> false
eq(s(X), s(Y)) -> eq(X, Y)
rm(N, nil) -> nil
rm(N, add(M, X)) -> ifrm(eq(N, M), N, add(M, X))
ifrm(true, N, add(M, X)) -> rm(N, X)
ifrm(false, N, add(M, X)) -> add(M, rm(N, X))
purge(nil) -> nil
purge(add(N, X)) -> add(N, purge(rm(N, X)))


Strategy:

innermost




The following dependency pair can be strictly oriented:

PURGE(add(N, X)) -> PURGE(rm(N, X))


Additionally, the following usable rules for innermost can be oriented:

rm(N, nil) -> nil
rm(N, add(M, X)) -> ifrm(eq(N, M), N, add(M, X))
ifrm(true, N, add(M, X)) -> rm(N, X)
ifrm(false, N, add(M, X)) -> add(M, rm(N, X))
eq(0, 0) -> true
eq(0, s(X)) -> false
eq(s(X), 0) -> false
eq(s(X), s(Y)) -> eq(X, Y)


Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(eq(x1, x2))=  0  
  POL(0)=  0  
  POL(PURGE(x1))=  1 + x1  
  POL(false)=  0  
  POL(nil)=  0  
  POL(ifrm(x1, x2, x3))=  x3  
  POL(true)=  0  
  POL(rm(x1, x2))=  x2  
  POL(s(x1))=  0  
  POL(add(x1, x2))=  1 + x2  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
           →DP Problem 6
Dependency Graph


Dependency Pair:


Rules:


eq(0, 0) -> true
eq(0, s(X)) -> false
eq(s(X), 0) -> false
eq(s(X), s(Y)) -> eq(X, Y)
rm(N, nil) -> nil
rm(N, add(M, X)) -> ifrm(eq(N, M), N, add(M, X))
ifrm(true, N, add(M, X)) -> rm(N, X)
ifrm(false, N, add(M, X)) -> add(M, rm(N, X))
purge(nil) -> nil
purge(add(N, X)) -> add(N, purge(rm(N, X)))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.

Innermost Termination of R successfully shown.
Duration:
0:00 minutes