R
↳Dependency Pair Analysis
EQ(s(X), s(Y)) -> EQ(X, Y)
RM(N, add(M, X)) -> IFRM(eq(N, M), N, add(M, X))
RM(N, add(M, X)) -> EQ(N, M)
IFRM(true, N, add(M, X)) -> RM(N, X)
IFRM(false, N, add(M, X)) -> RM(N, X)
PURGE(add(N, X)) -> PURGE(rm(N, X))
PURGE(add(N, X)) -> RM(N, X)
R
↳DPs
→DP Problem 1
↳Argument Filtering and Ordering
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
EQ(s(X), s(Y)) -> EQ(X, Y)
eq(0, 0) -> true
eq(0, s(X)) -> false
eq(s(X), 0) -> false
eq(s(X), s(Y)) -> eq(X, Y)
rm(N, nil) -> nil
rm(N, add(M, X)) -> ifrm(eq(N, M), N, add(M, X))
ifrm(true, N, add(M, X)) -> rm(N, X)
ifrm(false, N, add(M, X)) -> add(M, rm(N, X))
purge(nil) -> nil
purge(add(N, X)) -> add(N, purge(rm(N, X)))
innermost
EQ(s(X), s(Y)) -> EQ(X, Y)
trivial
EQ(x1, x2) -> EQ(x1, x2)
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 4
↳Dependency Graph
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
eq(0, 0) -> true
eq(0, s(X)) -> false
eq(s(X), 0) -> false
eq(s(X), s(Y)) -> eq(X, Y)
rm(N, nil) -> nil
rm(N, add(M, X)) -> ifrm(eq(N, M), N, add(M, X))
ifrm(true, N, add(M, X)) -> rm(N, X)
ifrm(false, N, add(M, X)) -> add(M, rm(N, X))
purge(nil) -> nil
purge(add(N, X)) -> add(N, purge(rm(N, X)))
innermost
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳Argument Filtering and Ordering
→DP Problem 3
↳AFS
IFRM(false, N, add(M, X)) -> RM(N, X)
IFRM(true, N, add(M, X)) -> RM(N, X)
RM(N, add(M, X)) -> IFRM(eq(N, M), N, add(M, X))
eq(0, 0) -> true
eq(0, s(X)) -> false
eq(s(X), 0) -> false
eq(s(X), s(Y)) -> eq(X, Y)
rm(N, nil) -> nil
rm(N, add(M, X)) -> ifrm(eq(N, M), N, add(M, X))
ifrm(true, N, add(M, X)) -> rm(N, X)
ifrm(false, N, add(M, X)) -> add(M, rm(N, X))
purge(nil) -> nil
purge(add(N, X)) -> add(N, purge(rm(N, X)))
innermost
IFRM(false, N, add(M, X)) -> RM(N, X)
IFRM(true, N, add(M, X)) -> RM(N, X)
eq(0, 0) -> true
eq(0, s(X)) -> false
eq(s(X), 0) -> false
eq(s(X), s(Y)) -> eq(X, Y)
eq > true
0 > false
IFRM(x1, x2, x3) -> x3
add(x1, x2) -> add(x1, x2)
RM(x1, x2) -> x2
eq(x1, x2) -> eq(x1, x2)
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 5
↳Dependency Graph
→DP Problem 3
↳AFS
RM(N, add(M, X)) -> IFRM(eq(N, M), N, add(M, X))
eq(0, 0) -> true
eq(0, s(X)) -> false
eq(s(X), 0) -> false
eq(s(X), s(Y)) -> eq(X, Y)
rm(N, nil) -> nil
rm(N, add(M, X)) -> ifrm(eq(N, M), N, add(M, X))
ifrm(true, N, add(M, X)) -> rm(N, X)
ifrm(false, N, add(M, X)) -> add(M, rm(N, X))
purge(nil) -> nil
purge(add(N, X)) -> add(N, purge(rm(N, X)))
innermost
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳Argument Filtering and Ordering
PURGE(add(N, X)) -> PURGE(rm(N, X))
eq(0, 0) -> true
eq(0, s(X)) -> false
eq(s(X), 0) -> false
eq(s(X), s(Y)) -> eq(X, Y)
rm(N, nil) -> nil
rm(N, add(M, X)) -> ifrm(eq(N, M), N, add(M, X))
ifrm(true, N, add(M, X)) -> rm(N, X)
ifrm(false, N, add(M, X)) -> add(M, rm(N, X))
purge(nil) -> nil
purge(add(N, X)) -> add(N, purge(rm(N, X)))
innermost
PURGE(add(N, X)) -> PURGE(rm(N, X))
rm(N, nil) -> nil
rm(N, add(M, X)) -> ifrm(eq(N, M), N, add(M, X))
ifrm(true, N, add(M, X)) -> rm(N, X)
ifrm(false, N, add(M, X)) -> add(M, rm(N, X))
eq(0, 0) -> true
eq(0, s(X)) -> false
eq(s(X), 0) -> false
eq(s(X), s(Y)) -> eq(X, Y)
eq > false
0 > true
PURGE(x1) -> PURGE(x1)
add(x1, x2) -> add(x1, x2)
rm(x1, x2) -> x2
ifrm(x1, x2, x3) -> x3
eq(x1, x2) -> eq(x1, x2)
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 6
↳Dependency Graph
eq(0, 0) -> true
eq(0, s(X)) -> false
eq(s(X), 0) -> false
eq(s(X), s(Y)) -> eq(X, Y)
rm(N, nil) -> nil
rm(N, add(M, X)) -> ifrm(eq(N, M), N, add(M, X))
ifrm(true, N, add(M, X)) -> rm(N, X)
ifrm(false, N, add(M, X)) -> add(M, rm(N, X))
purge(nil) -> nil
purge(add(N, X)) -> add(N, purge(rm(N, X)))
innermost