Term Rewriting System R:
[Y, X]
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))

Innermost Termination of R to be shown.

`   R`
`     ↳Dependency Pair Analysis`

R contains the following Dependency Pairs:

LE(s(X), s(Y)) -> LE(X, Y)
MINUS(s(X), Y) -> IFMINUS(le(s(X), Y), s(X), Y)
MINUS(s(X), Y) -> LE(s(X), Y)
IFMINUS(false, s(X), Y) -> MINUS(X, Y)
QUOT(s(X), s(Y)) -> QUOT(minus(X, Y), s(Y))
QUOT(s(X), s(Y)) -> MINUS(X, Y)

Furthermore, R contains three SCCs.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Argument Filtering and Ordering`
`       →DP Problem 2`
`         ↳AFS`
`       →DP Problem 3`
`         ↳AFS`

Dependency Pair:

LE(s(X), s(Y)) -> LE(X, Y)

Rules:

le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))

Strategy:

innermost

The following dependency pair can be strictly oriented:

LE(s(X), s(Y)) -> LE(X, Y)

There are no usable rules for innermost w.r.t. to the AFS that need to be oriented.
Used ordering: Polynomial ordering with Polynomial interpretation:
 POL(LE(x1, x2)) =  x1 + x2 POL(s(x1)) =  1 + x1

resulting in one new DP problem.
Used Argument Filtering System:
LE(x1, x2) -> LE(x1, x2)
s(x1) -> s(x1)

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳AFS`
`           →DP Problem 4`
`             ↳Dependency Graph`
`       →DP Problem 2`
`         ↳AFS`
`       →DP Problem 3`
`         ↳AFS`

Dependency Pair:

Rules:

le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))

Strategy:

innermost

Using the Dependency Graph resulted in no new DP problems.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳AFS`
`       →DP Problem 2`
`         ↳Argument Filtering and Ordering`
`       →DP Problem 3`
`         ↳AFS`

Dependency Pairs:

IFMINUS(false, s(X), Y) -> MINUS(X, Y)
MINUS(s(X), Y) -> IFMINUS(le(s(X), Y), s(X), Y)

Rules:

le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))

Strategy:

innermost

The following dependency pair can be strictly oriented:

IFMINUS(false, s(X), Y) -> MINUS(X, Y)

The following usable rules for innermost w.r.t. to the AFS can be oriented:

le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)

Used ordering: Polynomial ordering with Polynomial interpretation:
 POL(IFMINUS(x1, x2, x3)) =  x1 + x2 + x3 POL(false) =  0 POL(MINUS(x1, x2)) =  x1 + x2 POL(true) =  0 POL(s(x1)) =  1 + x1 POL(le) =  0

resulting in one new DP problem.
Used Argument Filtering System:
IFMINUS(x1, x2, x3) -> IFMINUS(x1, x2, x3)
MINUS(x1, x2) -> MINUS(x1, x2)
s(x1) -> s(x1)
le(x1, x2) -> le

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳AFS`
`       →DP Problem 2`
`         ↳AFS`
`           →DP Problem 5`
`             ↳Dependency Graph`
`       →DP Problem 3`
`         ↳AFS`

Dependency Pair:

MINUS(s(X), Y) -> IFMINUS(le(s(X), Y), s(X), Y)

Rules:

le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))

Strategy:

innermost

Using the Dependency Graph resulted in no new DP problems.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳AFS`
`       →DP Problem 2`
`         ↳AFS`
`       →DP Problem 3`
`         ↳Argument Filtering and Ordering`

Dependency Pair:

QUOT(s(X), s(Y)) -> QUOT(minus(X, Y), s(Y))

Rules:

le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))

Strategy:

innermost

The following dependency pair can be strictly oriented:

QUOT(s(X), s(Y)) -> QUOT(minus(X, Y), s(Y))

The following usable rules for innermost w.r.t. to the AFS can be oriented:

minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))

Used ordering: Polynomial ordering with Polynomial interpretation:
 POL(QUOT(x1, x2)) =  x1 + x2 POL(0) =  0 POL(s(x1)) =  1 + x1

resulting in one new DP problem.
Used Argument Filtering System:
QUOT(x1, x2) -> QUOT(x1, x2)
s(x1) -> s(x1)
minus(x1, x2) -> x1
ifMinus(x1, x2, x3) -> x2

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳AFS`
`       →DP Problem 2`
`         ↳AFS`
`       →DP Problem 3`
`         ↳AFS`
`           →DP Problem 6`
`             ↳Dependency Graph`

Dependency Pair:

Rules:

le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))

Strategy:

innermost

Using the Dependency Graph resulted in no new DP problems.

Innermost Termination of R successfully shown.
Duration:
0:00 minutes