Term Rewriting System R:
[Y, X]
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))

Innermost Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

LE(s(X), s(Y)) -> LE(X, Y)
MINUS(s(X), Y) -> IFMINUS(le(s(X), Y), s(X), Y)
MINUS(s(X), Y) -> LE(s(X), Y)
IFMINUS(false, s(X), Y) -> MINUS(X, Y)
QUOT(s(X), s(Y)) -> QUOT(minus(X, Y), s(Y))
QUOT(s(X), s(Y)) -> MINUS(X, Y)

Furthermore, R contains three SCCs.


   R
DPs
       →DP Problem 1
Forward Instantiation Transformation
       →DP Problem 2
Nar
       →DP Problem 3
Nar


Dependency Pair:

LE(s(X), s(Y)) -> LE(X, Y)


Rules:


le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

LE(s(X), s(Y)) -> LE(X, Y)
one new Dependency Pair is created:

LE(s(s(X'')), s(s(Y''))) -> LE(s(X''), s(Y''))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
           →DP Problem 4
Forward Instantiation Transformation
       →DP Problem 2
Nar
       →DP Problem 3
Nar


Dependency Pair:

LE(s(s(X'')), s(s(Y''))) -> LE(s(X''), s(Y''))


Rules:


le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

LE(s(s(X'')), s(s(Y''))) -> LE(s(X''), s(Y''))
one new Dependency Pair is created:

LE(s(s(s(X''''))), s(s(s(Y'''')))) -> LE(s(s(X'''')), s(s(Y'''')))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
           →DP Problem 4
FwdInst
             ...
               →DP Problem 5
Argument Filtering and Ordering
       →DP Problem 2
Nar
       →DP Problem 3
Nar


Dependency Pair:

LE(s(s(s(X''''))), s(s(s(Y'''')))) -> LE(s(s(X'''')), s(s(Y'''')))


Rules:


le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))


Strategy:

innermost




The following dependency pair can be strictly oriented:

LE(s(s(s(X''''))), s(s(s(Y'''')))) -> LE(s(s(X'''')), s(s(Y'''')))


There are no usable rules for innermost w.r.t. to the AFS that need to be oriented.
Used ordering: Homeomorphic Embedding Order with EMB
resulting in one new DP problem.
Used Argument Filtering System:
LE(x1, x2) -> LE(x1, x2)
s(x1) -> s(x1)


   R
DPs
       →DP Problem 1
FwdInst
           →DP Problem 4
FwdInst
             ...
               →DP Problem 6
Dependency Graph
       →DP Problem 2
Nar
       →DP Problem 3
Nar


Dependency Pair:


Rules:


le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Narrowing Transformation
       →DP Problem 3
Nar


Dependency Pairs:

IFMINUS(false, s(X), Y) -> MINUS(X, Y)
MINUS(s(X), Y) -> IFMINUS(le(s(X), Y), s(X), Y)


Rules:


le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))


Strategy:

innermost




On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

MINUS(s(X), Y) -> IFMINUS(le(s(X), Y), s(X), Y)
two new Dependency Pairs are created:

MINUS(s(X''), 0) -> IFMINUS(false, s(X''), 0)
MINUS(s(X''), s(Y'')) -> IFMINUS(le(X'', Y''), s(X''), s(Y''))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 7
Narrowing Transformation
       →DP Problem 3
Nar


Dependency Pairs:

MINUS(s(X''), s(Y'')) -> IFMINUS(le(X'', Y''), s(X''), s(Y''))
MINUS(s(X''), 0) -> IFMINUS(false, s(X''), 0)
IFMINUS(false, s(X), Y) -> MINUS(X, Y)


Rules:


le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))


Strategy:

innermost




On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

MINUS(s(X''), s(Y'')) -> IFMINUS(le(X'', Y''), s(X''), s(Y''))
three new Dependency Pairs are created:

MINUS(s(0), s(Y''')) -> IFMINUS(true, s(0), s(Y'''))
MINUS(s(s(X')), s(0)) -> IFMINUS(false, s(s(X')), s(0))
MINUS(s(s(X')), s(s(Y'))) -> IFMINUS(le(X', Y'), s(s(X')), s(s(Y')))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 7
Nar
             ...
               →DP Problem 8
Instantiation Transformation
       →DP Problem 3
Nar


Dependency Pairs:

MINUS(s(s(X')), s(s(Y'))) -> IFMINUS(le(X', Y'), s(s(X')), s(s(Y')))
MINUS(s(s(X')), s(0)) -> IFMINUS(false, s(s(X')), s(0))
IFMINUS(false, s(X), Y) -> MINUS(X, Y)
MINUS(s(X''), 0) -> IFMINUS(false, s(X''), 0)


Rules:


le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))


Strategy:

innermost




On this DP problem, an Instantiation SCC transformation can be performed.
As a result of transforming the rule

IFMINUS(false, s(X), Y) -> MINUS(X, Y)
three new Dependency Pairs are created:

IFMINUS(false, s(X'), 0) -> MINUS(X', 0)
IFMINUS(false, s(s(X''')), s(0)) -> MINUS(s(X'''), s(0))
IFMINUS(false, s(s(X''')), s(s(Y'''))) -> MINUS(s(X'''), s(s(Y''')))

The transformation is resulting in three new DP problems:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 7
Nar
             ...
               →DP Problem 9
Forward Instantiation Transformation
       →DP Problem 3
Nar


Dependency Pairs:

IFMINUS(false, s(s(X''')), s(s(Y'''))) -> MINUS(s(X'''), s(s(Y''')))
MINUS(s(s(X')), s(s(Y'))) -> IFMINUS(le(X', Y'), s(s(X')), s(s(Y')))


Rules:


le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

IFMINUS(false, s(s(X''')), s(s(Y'''))) -> MINUS(s(X'''), s(s(Y''')))
one new Dependency Pair is created:

IFMINUS(false, s(s(s(X''''))), s(s(Y''''))) -> MINUS(s(s(X'''')), s(s(Y'''')))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 7
Nar
             ...
               →DP Problem 12
Argument Filtering and Ordering
       →DP Problem 3
Nar


Dependency Pairs:

IFMINUS(false, s(s(s(X''''))), s(s(Y''''))) -> MINUS(s(s(X'''')), s(s(Y'''')))
MINUS(s(s(X')), s(s(Y'))) -> IFMINUS(le(X', Y'), s(s(X')), s(s(Y')))


Rules:


le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))


Strategy:

innermost




The following dependency pair can be strictly oriented:

IFMINUS(false, s(s(s(X''''))), s(s(Y''''))) -> MINUS(s(s(X'''')), s(s(Y'''')))


There are no usable rules for innermost w.r.t. to the AFS that need to be oriented.
Used ordering: Homeomorphic Embedding Order with EMB
resulting in one new DP problem.
Used Argument Filtering System:
IFMINUS(x1, x2, x3) -> x2
s(x1) -> s(x1)
MINUS(x1, x2) -> x1


   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 7
Nar
             ...
               →DP Problem 16
Dependency Graph
       →DP Problem 3
Nar


Dependency Pair:

MINUS(s(s(X')), s(s(Y'))) -> IFMINUS(le(X', Y'), s(s(X')), s(s(Y')))


Rules:


le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 7
Nar
             ...
               →DP Problem 10
Forward Instantiation Transformation
       →DP Problem 3
Nar


Dependency Pairs:

IFMINUS(false, s(s(X''')), s(0)) -> MINUS(s(X'''), s(0))
MINUS(s(s(X')), s(0)) -> IFMINUS(false, s(s(X')), s(0))


Rules:


le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

IFMINUS(false, s(s(X''')), s(0)) -> MINUS(s(X'''), s(0))
one new Dependency Pair is created:

IFMINUS(false, s(s(s(X''''))), s(0)) -> MINUS(s(s(X'''')), s(0))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 7
Nar
             ...
               →DP Problem 13
Argument Filtering and Ordering
       →DP Problem 3
Nar


Dependency Pairs:

IFMINUS(false, s(s(s(X''''))), s(0)) -> MINUS(s(s(X'''')), s(0))
MINUS(s(s(X')), s(0)) -> IFMINUS(false, s(s(X')), s(0))


Rules:


le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))


Strategy:

innermost




The following dependency pair can be strictly oriented:

IFMINUS(false, s(s(s(X''''))), s(0)) -> MINUS(s(s(X'''')), s(0))


There are no usable rules for innermost w.r.t. to the AFS that need to be oriented.
Used ordering: Homeomorphic Embedding Order with EMB
resulting in one new DP problem.
Used Argument Filtering System:
MINUS(x1, x2) -> x1
s(x1) -> s(x1)
IFMINUS(x1, x2, x3) -> x2


   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 7
Nar
             ...
               →DP Problem 17
Dependency Graph
       →DP Problem 3
Nar


Dependency Pair:

MINUS(s(s(X')), s(0)) -> IFMINUS(false, s(s(X')), s(0))


Rules:


le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 7
Nar
             ...
               →DP Problem 11
Forward Instantiation Transformation
       →DP Problem 3
Nar


Dependency Pairs:

IFMINUS(false, s(X'), 0) -> MINUS(X', 0)
MINUS(s(X''), 0) -> IFMINUS(false, s(X''), 0)


Rules:


le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

IFMINUS(false, s(X'), 0) -> MINUS(X', 0)
one new Dependency Pair is created:

IFMINUS(false, s(s(X'''')), 0) -> MINUS(s(X''''), 0)

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 7
Nar
             ...
               →DP Problem 14
Forward Instantiation Transformation
       →DP Problem 3
Nar


Dependency Pairs:

IFMINUS(false, s(s(X'''')), 0) -> MINUS(s(X''''), 0)
MINUS(s(X''), 0) -> IFMINUS(false, s(X''), 0)


Rules:


le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

MINUS(s(X''), 0) -> IFMINUS(false, s(X''), 0)
one new Dependency Pair is created:

MINUS(s(s(X'''''')), 0) -> IFMINUS(false, s(s(X'''''')), 0)

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 7
Nar
             ...
               →DP Problem 15
Argument Filtering and Ordering
       →DP Problem 3
Nar


Dependency Pairs:

MINUS(s(s(X'''''')), 0) -> IFMINUS(false, s(s(X'''''')), 0)
IFMINUS(false, s(s(X'''')), 0) -> MINUS(s(X''''), 0)


Rules:


le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))


Strategy:

innermost




The following dependency pair can be strictly oriented:

IFMINUS(false, s(s(X'''')), 0) -> MINUS(s(X''''), 0)


There are no usable rules for innermost w.r.t. to the AFS that need to be oriented.
Used ordering: Homeomorphic Embedding Order with EMB
resulting in one new DP problem.
Used Argument Filtering System:
IFMINUS(x1, x2, x3) -> x2
s(x1) -> s(x1)
MINUS(x1, x2) -> x1


   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 7
Nar
             ...
               →DP Problem 18
Dependency Graph
       →DP Problem 3
Nar


Dependency Pair:

MINUS(s(s(X'''''')), 0) -> IFMINUS(false, s(s(X'''''')), 0)


Rules:


le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
       →DP Problem 3
Narrowing Transformation


Dependency Pair:

QUOT(s(X), s(Y)) -> QUOT(minus(X, Y), s(Y))


Rules:


le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))


Strategy:

innermost




On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

QUOT(s(X), s(Y)) -> QUOT(minus(X, Y), s(Y))
two new Dependency Pairs are created:

QUOT(s(0), s(Y'')) -> QUOT(0, s(Y''))
QUOT(s(s(X'')), s(Y'')) -> QUOT(ifMinus(le(s(X''), Y''), s(X''), Y''), s(Y''))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
       →DP Problem 3
Nar
           →DP Problem 19
Narrowing Transformation


Dependency Pair:

QUOT(s(s(X'')), s(Y'')) -> QUOT(ifMinus(le(s(X''), Y''), s(X''), Y''), s(Y''))


Rules:


le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))


Strategy:

innermost




On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

QUOT(s(s(X'')), s(Y'')) -> QUOT(ifMinus(le(s(X''), Y''), s(X''), Y''), s(Y''))
two new Dependency Pairs are created:

QUOT(s(s(X''')), s(0)) -> QUOT(ifMinus(false, s(X'''), 0), s(0))
QUOT(s(s(X''')), s(s(Y'))) -> QUOT(ifMinus(le(X''', Y'), s(X'''), s(Y')), s(s(Y')))

The transformation is resulting in two new DP problems:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
       →DP Problem 3
Nar
           →DP Problem 19
Nar
             ...
               →DP Problem 20
Rewriting Transformation


Dependency Pair:

QUOT(s(s(X''')), s(0)) -> QUOT(ifMinus(false, s(X'''), 0), s(0))


Rules:


le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

QUOT(s(s(X''')), s(0)) -> QUOT(ifMinus(false, s(X'''), 0), s(0))
one new Dependency Pair is created:

QUOT(s(s(X''')), s(0)) -> QUOT(s(minus(X''', 0)), s(0))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
       →DP Problem 3
Nar
           →DP Problem 19
Nar
             ...
               →DP Problem 22
Narrowing Transformation


Dependency Pair:

QUOT(s(s(X''')), s(0)) -> QUOT(s(minus(X''', 0)), s(0))


Rules:


le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))


Strategy:

innermost




On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

QUOT(s(s(X''')), s(0)) -> QUOT(s(minus(X''', 0)), s(0))
two new Dependency Pairs are created:

QUOT(s(s(0)), s(0)) -> QUOT(s(0), s(0))
QUOT(s(s(s(X'))), s(0)) -> QUOT(s(ifMinus(le(s(X'), 0), s(X'), 0)), s(0))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
       →DP Problem 3
Nar
           →DP Problem 19
Nar
             ...
               →DP Problem 24
Rewriting Transformation


Dependency Pair:

QUOT(s(s(s(X'))), s(0)) -> QUOT(s(ifMinus(le(s(X'), 0), s(X'), 0)), s(0))


Rules:


le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

QUOT(s(s(s(X'))), s(0)) -> QUOT(s(ifMinus(le(s(X'), 0), s(X'), 0)), s(0))
one new Dependency Pair is created:

QUOT(s(s(s(X'))), s(0)) -> QUOT(s(ifMinus(false, s(X'), 0)), s(0))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
       →DP Problem 3
Nar
           →DP Problem 19
Nar
             ...
               →DP Problem 27
Rewriting Transformation


Dependency Pair:

QUOT(s(s(s(X'))), s(0)) -> QUOT(s(ifMinus(false, s(X'), 0)), s(0))


Rules:


le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

QUOT(s(s(s(X'))), s(0)) -> QUOT(s(ifMinus(false, s(X'), 0)), s(0))
one new Dependency Pair is created:

QUOT(s(s(s(X'))), s(0)) -> QUOT(s(s(minus(X', 0))), s(0))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
       →DP Problem 3
Nar
           →DP Problem 19
Nar
             ...
               →DP Problem 46
Remaining Obligation(s)




The following remains to be proven:


   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
       →DP Problem 3
Nar
           →DP Problem 19
Nar
             ...
               →DP Problem 21
Narrowing Transformation


Dependency Pair:

QUOT(s(s(X''')), s(s(Y'))) -> QUOT(ifMinus(le(X''', Y'), s(X'''), s(Y')), s(s(Y')))


Rules:


le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))


Strategy:

innermost




On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

QUOT(s(s(X''')), s(s(Y'))) -> QUOT(ifMinus(le(X''', Y'), s(X'''), s(Y')), s(s(Y')))
three new Dependency Pairs are created:

QUOT(s(s(0)), s(s(Y''))) -> QUOT(ifMinus(true, s(0), s(Y'')), s(s(Y'')))
QUOT(s(s(s(X'))), s(s(0))) -> QUOT(ifMinus(false, s(s(X')), s(0)), s(s(0)))
QUOT(s(s(s(X'))), s(s(s(Y'')))) -> QUOT(ifMinus(le(X', Y''), s(s(X')), s(s(Y''))), s(s(s(Y''))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
       →DP Problem 3
Nar
           →DP Problem 19
Nar
             ...
               →DP Problem 23
Rewriting Transformation


Dependency Pairs:

QUOT(s(s(s(X'))), s(s(s(Y'')))) -> QUOT(ifMinus(le(X', Y''), s(s(X')), s(s(Y''))), s(s(s(Y''))))
QUOT(s(s(s(X'))), s(s(0))) -> QUOT(ifMinus(false, s(s(X')), s(0)), s(s(0)))
QUOT(s(s(0)), s(s(Y''))) -> QUOT(ifMinus(true, s(0), s(Y'')), s(s(Y'')))


Rules:


le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

QUOT(s(s(0)), s(s(Y''))) -> QUOT(ifMinus(true, s(0), s(Y'')), s(s(Y'')))
one new Dependency Pair is created:

QUOT(s(s(0)), s(s(Y''))) -> QUOT(0, s(s(Y'')))

The transformation is resulting in two new DP problems:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
       →DP Problem 3
Nar
           →DP Problem 19
Nar
             ...
               →DP Problem 25
Narrowing Transformation


Dependency Pair:

QUOT(s(s(s(X'))), s(s(s(Y'')))) -> QUOT(ifMinus(le(X', Y''), s(s(X')), s(s(Y''))), s(s(s(Y''))))


Rules:


le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))


Strategy:

innermost




On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

QUOT(s(s(s(X'))), s(s(s(Y'')))) -> QUOT(ifMinus(le(X', Y''), s(s(X')), s(s(Y''))), s(s(s(Y''))))
three new Dependency Pairs are created:

QUOT(s(s(s(0))), s(s(s(Y''')))) -> QUOT(ifMinus(true, s(s(0)), s(s(Y'''))), s(s(s(Y'''))))
QUOT(s(s(s(s(X'')))), s(s(s(0)))) -> QUOT(ifMinus(false, s(s(s(X''))), s(s(0))), s(s(s(0))))
QUOT(s(s(s(s(X'')))), s(s(s(s(Y'))))) -> QUOT(ifMinus(le(X'', Y'), s(s(s(X''))), s(s(s(Y')))), s(s(s(s(Y')))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
       →DP Problem 3
Nar
           →DP Problem 19
Nar
             ...
               →DP Problem 28
Rewriting Transformation


Dependency Pairs:

QUOT(s(s(s(s(X'')))), s(s(s(s(Y'))))) -> QUOT(ifMinus(le(X'', Y'), s(s(s(X''))), s(s(s(Y')))), s(s(s(s(Y')))))
QUOT(s(s(s(s(X'')))), s(s(s(0)))) -> QUOT(ifMinus(false, s(s(s(X''))), s(s(0))), s(s(s(0))))
QUOT(s(s(s(0))), s(s(s(Y''')))) -> QUOT(ifMinus(true, s(s(0)), s(s(Y'''))), s(s(s(Y'''))))


Rules:


le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

QUOT(s(s(s(0))), s(s(s(Y''')))) -> QUOT(ifMinus(true, s(s(0)), s(s(Y'''))), s(s(s(Y'''))))
one new Dependency Pair is created:

QUOT(s(s(s(0))), s(s(s(Y''')))) -> QUOT(0, s(s(s(Y'''))))

The transformation is resulting in two new DP problems:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
       →DP Problem 3
Nar
           →DP Problem 19
Nar
             ...
               →DP Problem 31
Narrowing Transformation


Dependency Pair:

QUOT(s(s(s(s(X'')))), s(s(s(s(Y'))))) -> QUOT(ifMinus(le(X'', Y'), s(s(s(X''))), s(s(s(Y')))), s(s(s(s(Y')))))


Rules:


le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))


Strategy:

innermost




On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

QUOT(s(s(s(s(X'')))), s(s(s(s(Y'))))) -> QUOT(ifMinus(le(X'', Y'), s(s(s(X''))), s(s(s(Y')))), s(s(s(s(Y')))))
three new Dependency Pairs are created:

QUOT(s(s(s(s(0)))), s(s(s(s(Y''))))) -> QUOT(ifMinus(true, s(s(s(0))), s(s(s(Y'')))), s(s(s(s(Y'')))))
QUOT(s(s(s(s(s(X'))))), s(s(s(s(0))))) -> QUOT(ifMinus(false, s(s(s(s(X')))), s(s(s(0)))), s(s(s(s(0)))))
QUOT(s(s(s(s(s(X'))))), s(s(s(s(s(Y'')))))) -> QUOT(ifMinus(le(X', Y''), s(s(s(s(X')))), s(s(s(s(Y''))))), s(s(s(s(s(Y''))))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
       →DP Problem 3
Nar
           →DP Problem 19
Nar
             ...
               →DP Problem 34
Rewriting Transformation


Dependency Pairs:

QUOT(s(s(s(s(s(X'))))), s(s(s(s(s(Y'')))))) -> QUOT(ifMinus(le(X', Y''), s(s(s(s(X')))), s(s(s(s(Y''))))), s(s(s(s(s(Y''))))))
QUOT(s(s(s(s(s(X'))))), s(s(s(s(0))))) -> QUOT(ifMinus(false, s(s(s(s(X')))), s(s(s(0)))), s(s(s(s(0)))))
QUOT(s(s(s(s(0)))), s(s(s(s(Y''))))) -> QUOT(ifMinus(true, s(s(s(0))), s(s(s(Y'')))), s(s(s(s(Y'')))))


Rules:


le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

QUOT(s(s(s(s(0)))), s(s(s(s(Y''))))) -> QUOT(ifMinus(true, s(s(s(0))), s(s(s(Y'')))), s(s(s(s(Y'')))))
one new Dependency Pair is created:

QUOT(s(s(s(s(0)))), s(s(s(s(Y''))))) -> QUOT(0, s(s(s(s(Y'')))))

The transformation is resulting in two new DP problems:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
       →DP Problem 3
Nar
           →DP Problem 19
Nar
             ...
               →DP Problem 46
Remaining Obligation(s)




The following remains to be proven:


   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
       →DP Problem 3
Nar
           →DP Problem 19
Nar
             ...
               →DP Problem 38
Rewriting Transformation


Dependency Pair:

QUOT(s(s(s(s(s(X'))))), s(s(s(s(0))))) -> QUOT(ifMinus(false, s(s(s(s(X')))), s(s(s(0)))), s(s(s(s(0)))))


Rules:


le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

QUOT(s(s(s(s(s(X'))))), s(s(s(s(0))))) -> QUOT(ifMinus(false, s(s(s(s(X')))), s(s(s(0)))), s(s(s(s(0)))))
one new Dependency Pair is created:

QUOT(s(s(s(s(s(X'))))), s(s(s(s(0))))) -> QUOT(s(minus(s(s(s(X'))), s(s(s(0))))), s(s(s(s(0)))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
       →DP Problem 3
Nar
           →DP Problem 19
Nar
             ...
               →DP Problem 40
Rewriting Transformation


Dependency Pair:

QUOT(s(s(s(s(s(X'))))), s(s(s(s(0))))) -> QUOT(s(minus(s(s(s(X'))), s(s(s(0))))), s(s(s(s(0)))))


Rules:


le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

QUOT(s(s(s(s(s(X'))))), s(s(s(s(0))))) -> QUOT(s(minus(s(s(s(X'))), s(s(s(0))))), s(s(s(s(0)))))
one new Dependency Pair is created:

QUOT(s(s(s(s(s(X'))))), s(s(s(s(0))))) -> QUOT(s(ifMinus(le(s(s(s(X'))), s(s(s(0)))), s(s(s(X'))), s(s(s(0))))), s(s(s(s(0)))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
       →DP Problem 3
Nar
           →DP Problem 19
Nar
             ...
               →DP Problem 42
Rewriting Transformation


Dependency Pair:

QUOT(s(s(s(s(s(X'))))), s(s(s(s(0))))) -> QUOT(s(ifMinus(le(s(s(s(X'))), s(s(s(0)))), s(s(s(X'))), s(s(s(0))))), s(s(s(s(0)))))


Rules:


le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

QUOT(s(s(s(s(s(X'))))), s(s(s(s(0))))) -> QUOT(s(ifMinus(le(s(s(s(X'))), s(s(s(0)))), s(s(s(X'))), s(s(s(0))))), s(s(s(s(0)))))
one new Dependency Pair is created:

QUOT(s(s(s(s(s(X'))))), s(s(s(s(0))))) -> QUOT(s(ifMinus(le(s(s(X')), s(s(0))), s(s(s(X'))), s(s(s(0))))), s(s(s(s(0)))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
       →DP Problem 3
Nar
           →DP Problem 19
Nar
             ...
               →DP Problem 44
Rewriting Transformation


Dependency Pair:

QUOT(s(s(s(s(s(X'))))), s(s(s(s(0))))) -> QUOT(s(ifMinus(le(s(s(X')), s(s(0))), s(s(s(X'))), s(s(s(0))))), s(s(s(s(0)))))


Rules:


le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

QUOT(s(s(s(s(s(X'))))), s(s(s(s(0))))) -> QUOT(s(ifMinus(le(s(s(X')), s(s(0))), s(s(s(X'))), s(s(s(0))))), s(s(s(s(0)))))
one new Dependency Pair is created:

QUOT(s(s(s(s(s(X'))))), s(s(s(s(0))))) -> QUOT(s(ifMinus(le(s(X'), s(0)), s(s(s(X'))), s(s(s(0))))), s(s(s(s(0)))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
       →DP Problem 3
Nar
           →DP Problem 19
Nar
             ...
               →DP Problem 45
Rewriting Transformation


Dependency Pair:

QUOT(s(s(s(s(s(X'))))), s(s(s(s(0))))) -> QUOT(s(ifMinus(le(s(X'), s(0)), s(s(s(X'))), s(s(s(0))))), s(s(s(s(0)))))


Rules:


le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

QUOT(s(s(s(s(s(X'))))), s(s(s(s(0))))) -> QUOT(s(ifMinus(le(s(X'), s(0)), s(s(s(X'))), s(s(s(0))))), s(s(s(s(0)))))
one new Dependency Pair is created:

QUOT(s(s(s(s(s(X'))))), s(s(s(s(0))))) -> QUOT(s(ifMinus(le(X', 0), s(s(s(X'))), s(s(s(0))))), s(s(s(s(0)))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
       →DP Problem 3
Nar
           →DP Problem 19
Nar
             ...
               →DP Problem 46
Remaining Obligation(s)




The following remains to be proven:


   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
       →DP Problem 3
Nar
           →DP Problem 19
Nar
             ...
               →DP Problem 32
Rewriting Transformation


Dependency Pair:

QUOT(s(s(s(s(X'')))), s(s(s(0)))) -> QUOT(ifMinus(false, s(s(s(X''))), s(s(0))), s(s(s(0))))


Rules:


le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

QUOT(s(s(s(s(X'')))), s(s(s(0)))) -> QUOT(ifMinus(false, s(s(s(X''))), s(s(0))), s(s(s(0))))
one new Dependency Pair is created:

QUOT(s(s(s(s(X'')))), s(s(s(0)))) -> QUOT(s(minus(s(s(X'')), s(s(0)))), s(s(s(0))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
       →DP Problem 3
Nar
           →DP Problem 19
Nar
             ...
               →DP Problem 35
Rewriting Transformation


Dependency Pair:

QUOT(s(s(s(s(X'')))), s(s(s(0)))) -> QUOT(s(minus(s(s(X'')), s(s(0)))), s(s(s(0))))


Rules:


le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

QUOT(s(s(s(s(X'')))), s(s(s(0)))) -> QUOT(s(minus(s(s(X'')), s(s(0)))), s(s(s(0))))
one new Dependency Pair is created:

QUOT(s(s(s(s(X'')))), s(s(s(0)))) -> QUOT(s(ifMinus(le(s(s(X'')), s(s(0))), s(s(X'')), s(s(0)))), s(s(s(0))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
       →DP Problem 3
Nar
           →DP Problem 19
Nar
             ...
               →DP Problem 39
Rewriting Transformation


Dependency Pair:

QUOT(s(s(s(s(X'')))), s(s(s(0)))) -> QUOT(s(ifMinus(le(s(s(X'')), s(s(0))), s(s(X'')), s(s(0)))), s(s(s(0))))


Rules:


le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

QUOT(s(s(s(s(X'')))), s(s(s(0)))) -> QUOT(s(ifMinus(le(s(s(X'')), s(s(0))), s(s(X'')), s(s(0)))), s(s(s(0))))
one new Dependency Pair is created:

QUOT(s(s(s(s(X'')))), s(s(s(0)))) -> QUOT(s(ifMinus(le(s(X''), s(0)), s(s(X'')), s(s(0)))), s(s(s(0))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
       →DP Problem 3
Nar
           →DP Problem 19
Nar
             ...
               →DP Problem 41
Rewriting Transformation


Dependency Pair:

QUOT(s(s(s(s(X'')))), s(s(s(0)))) -> QUOT(s(ifMinus(le(s(X''), s(0)), s(s(X'')), s(s(0)))), s(s(s(0))))


Rules:


le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

QUOT(s(s(s(s(X'')))), s(s(s(0)))) -> QUOT(s(ifMinus(le(s(X''), s(0)), s(s(X'')), s(s(0)))), s(s(s(0))))
one new Dependency Pair is created:

QUOT(s(s(s(s(X'')))), s(s(s(0)))) -> QUOT(s(ifMinus(le(X'', 0), s(s(X'')), s(s(0)))), s(s(s(0))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
       →DP Problem 3
Nar
           →DP Problem 19
Nar
             ...
               →DP Problem 46
Remaining Obligation(s)




The following remains to be proven:


   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
       →DP Problem 3
Nar
           →DP Problem 19
Nar
             ...
               →DP Problem 26
Rewriting Transformation


Dependency Pair:

QUOT(s(s(s(X'))), s(s(0))) -> QUOT(ifMinus(false, s(s(X')), s(0)), s(s(0)))


Rules:


le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

QUOT(s(s(s(X'))), s(s(0))) -> QUOT(ifMinus(false, s(s(X')), s(0)), s(s(0)))
one new Dependency Pair is created:

QUOT(s(s(s(X'))), s(s(0))) -> QUOT(s(minus(s(X'), s(0))), s(s(0)))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
       →DP Problem 3
Nar
           →DP Problem 19
Nar
             ...
               →DP Problem 29
Rewriting Transformation


Dependency Pair:

QUOT(s(s(s(X'))), s(s(0))) -> QUOT(s(minus(s(X'), s(0))), s(s(0)))


Rules:


le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

QUOT(s(s(s(X'))), s(s(0))) -> QUOT(s(minus(s(X'), s(0))), s(s(0)))
one new Dependency Pair is created:

QUOT(s(s(s(X'))), s(s(0))) -> QUOT(s(ifMinus(le(s(X'), s(0)), s(X'), s(0))), s(s(0)))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
       →DP Problem 3
Nar
           →DP Problem 19
Nar
             ...
               →DP Problem 33
Rewriting Transformation


Dependency Pair:

QUOT(s(s(s(X'))), s(s(0))) -> QUOT(s(ifMinus(le(s(X'), s(0)), s(X'), s(0))), s(s(0)))


Rules:


le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

QUOT(s(s(s(X'))), s(s(0))) -> QUOT(s(ifMinus(le(s(X'), s(0)), s(X'), s(0))), s(s(0)))
one new Dependency Pair is created:

QUOT(s(s(s(X'))), s(s(0))) -> QUOT(s(ifMinus(le(X', 0), s(X'), s(0))), s(s(0)))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
       →DP Problem 3
Nar
           →DP Problem 19
Nar
             ...
               →DP Problem 46
Remaining Obligation(s)




The following remains to be proven:

Innermost Termination of R could not be shown.
Duration:
0:01 minutes