R
↳Dependency Pair Analysis
LE(s(X), s(Y)) -> LE(X, Y)
MINUS(s(X), Y) -> IFMINUS(le(s(X), Y), s(X), Y)
MINUS(s(X), Y) -> LE(s(X), Y)
IFMINUS(false, s(X), Y) -> MINUS(X, Y)
QUOT(s(X), s(Y)) -> QUOT(minus(X, Y), s(Y))
QUOT(s(X), s(Y)) -> MINUS(X, Y)
R
↳DPs
→DP Problem 1
↳Forward Instantiation Transformation
→DP Problem 2
↳Nar
→DP Problem 3
↳Nar
LE(s(X), s(Y)) -> LE(X, Y)
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
innermost
one new Dependency Pair is created:
LE(s(X), s(Y)) -> LE(X, Y)
LE(s(s(X'')), s(s(Y''))) -> LE(s(X''), s(Y''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 4
↳Forward Instantiation Transformation
→DP Problem 2
↳Nar
→DP Problem 3
↳Nar
LE(s(s(X'')), s(s(Y''))) -> LE(s(X''), s(Y''))
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
innermost
one new Dependency Pair is created:
LE(s(s(X'')), s(s(Y''))) -> LE(s(X''), s(Y''))
LE(s(s(s(X''''))), s(s(s(Y'''')))) -> LE(s(s(X'''')), s(s(Y'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 4
↳FwdInst
...
→DP Problem 5
↳Argument Filtering and Ordering
→DP Problem 2
↳Nar
→DP Problem 3
↳Nar
LE(s(s(s(X''''))), s(s(s(Y'''')))) -> LE(s(s(X'''')), s(s(Y'''')))
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
innermost
LE(s(s(s(X''''))), s(s(s(Y'''')))) -> LE(s(s(X'''')), s(s(Y'''')))
LE(x1, x2) -> LE(x1, x2)
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 4
↳FwdInst
...
→DP Problem 6
↳Dependency Graph
→DP Problem 2
↳Nar
→DP Problem 3
↳Nar
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Narrowing Transformation
→DP Problem 3
↳Nar
IFMINUS(false, s(X), Y) -> MINUS(X, Y)
MINUS(s(X), Y) -> IFMINUS(le(s(X), Y), s(X), Y)
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
innermost
two new Dependency Pairs are created:
MINUS(s(X), Y) -> IFMINUS(le(s(X), Y), s(X), Y)
MINUS(s(X''), 0) -> IFMINUS(false, s(X''), 0)
MINUS(s(X''), s(Y'')) -> IFMINUS(le(X'', Y''), s(X''), s(Y''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 7
↳Narrowing Transformation
→DP Problem 3
↳Nar
MINUS(s(X''), s(Y'')) -> IFMINUS(le(X'', Y''), s(X''), s(Y''))
MINUS(s(X''), 0) -> IFMINUS(false, s(X''), 0)
IFMINUS(false, s(X), Y) -> MINUS(X, Y)
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
innermost
three new Dependency Pairs are created:
MINUS(s(X''), s(Y'')) -> IFMINUS(le(X'', Y''), s(X''), s(Y''))
MINUS(s(0), s(Y''')) -> IFMINUS(true, s(0), s(Y'''))
MINUS(s(s(X')), s(0)) -> IFMINUS(false, s(s(X')), s(0))
MINUS(s(s(X')), s(s(Y'))) -> IFMINUS(le(X', Y'), s(s(X')), s(s(Y')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 7
↳Nar
...
→DP Problem 8
↳Instantiation Transformation
→DP Problem 3
↳Nar
MINUS(s(s(X')), s(s(Y'))) -> IFMINUS(le(X', Y'), s(s(X')), s(s(Y')))
MINUS(s(s(X')), s(0)) -> IFMINUS(false, s(s(X')), s(0))
IFMINUS(false, s(X), Y) -> MINUS(X, Y)
MINUS(s(X''), 0) -> IFMINUS(false, s(X''), 0)
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
innermost
three new Dependency Pairs are created:
IFMINUS(false, s(X), Y) -> MINUS(X, Y)
IFMINUS(false, s(X'), 0) -> MINUS(X', 0)
IFMINUS(false, s(s(X''')), s(0)) -> MINUS(s(X'''), s(0))
IFMINUS(false, s(s(X''')), s(s(Y'''))) -> MINUS(s(X'''), s(s(Y''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 7
↳Nar
...
→DP Problem 9
↳Forward Instantiation Transformation
→DP Problem 3
↳Nar
IFMINUS(false, s(s(X''')), s(s(Y'''))) -> MINUS(s(X'''), s(s(Y''')))
MINUS(s(s(X')), s(s(Y'))) -> IFMINUS(le(X', Y'), s(s(X')), s(s(Y')))
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
innermost
one new Dependency Pair is created:
IFMINUS(false, s(s(X''')), s(s(Y'''))) -> MINUS(s(X'''), s(s(Y''')))
IFMINUS(false, s(s(s(X''''))), s(s(Y''''))) -> MINUS(s(s(X'''')), s(s(Y'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 7
↳Nar
...
→DP Problem 12
↳Argument Filtering and Ordering
→DP Problem 3
↳Nar
IFMINUS(false, s(s(s(X''''))), s(s(Y''''))) -> MINUS(s(s(X'''')), s(s(Y'''')))
MINUS(s(s(X')), s(s(Y'))) -> IFMINUS(le(X', Y'), s(s(X')), s(s(Y')))
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
innermost
IFMINUS(false, s(s(s(X''''))), s(s(Y''''))) -> MINUS(s(s(X'''')), s(s(Y'''')))
IFMINUS(x1, x2, x3) -> x2
s(x1) -> s(x1)
MINUS(x1, x2) -> x1
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 7
↳Nar
...
→DP Problem 16
↳Dependency Graph
→DP Problem 3
↳Nar
MINUS(s(s(X')), s(s(Y'))) -> IFMINUS(le(X', Y'), s(s(X')), s(s(Y')))
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 7
↳Nar
...
→DP Problem 10
↳Forward Instantiation Transformation
→DP Problem 3
↳Nar
IFMINUS(false, s(s(X''')), s(0)) -> MINUS(s(X'''), s(0))
MINUS(s(s(X')), s(0)) -> IFMINUS(false, s(s(X')), s(0))
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
innermost
one new Dependency Pair is created:
IFMINUS(false, s(s(X''')), s(0)) -> MINUS(s(X'''), s(0))
IFMINUS(false, s(s(s(X''''))), s(0)) -> MINUS(s(s(X'''')), s(0))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 7
↳Nar
...
→DP Problem 13
↳Argument Filtering and Ordering
→DP Problem 3
↳Nar
IFMINUS(false, s(s(s(X''''))), s(0)) -> MINUS(s(s(X'''')), s(0))
MINUS(s(s(X')), s(0)) -> IFMINUS(false, s(s(X')), s(0))
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
innermost
IFMINUS(false, s(s(s(X''''))), s(0)) -> MINUS(s(s(X'''')), s(0))
MINUS(x1, x2) -> x1
s(x1) -> s(x1)
IFMINUS(x1, x2, x3) -> x2
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 7
↳Nar
...
→DP Problem 17
↳Dependency Graph
→DP Problem 3
↳Nar
MINUS(s(s(X')), s(0)) -> IFMINUS(false, s(s(X')), s(0))
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 7
↳Nar
...
→DP Problem 11
↳Forward Instantiation Transformation
→DP Problem 3
↳Nar
IFMINUS(false, s(X'), 0) -> MINUS(X', 0)
MINUS(s(X''), 0) -> IFMINUS(false, s(X''), 0)
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
innermost
one new Dependency Pair is created:
IFMINUS(false, s(X'), 0) -> MINUS(X', 0)
IFMINUS(false, s(s(X'''')), 0) -> MINUS(s(X''''), 0)
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 7
↳Nar
...
→DP Problem 14
↳Forward Instantiation Transformation
→DP Problem 3
↳Nar
IFMINUS(false, s(s(X'''')), 0) -> MINUS(s(X''''), 0)
MINUS(s(X''), 0) -> IFMINUS(false, s(X''), 0)
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
innermost
one new Dependency Pair is created:
MINUS(s(X''), 0) -> IFMINUS(false, s(X''), 0)
MINUS(s(s(X'''''')), 0) -> IFMINUS(false, s(s(X'''''')), 0)
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 7
↳Nar
...
→DP Problem 15
↳Argument Filtering and Ordering
→DP Problem 3
↳Nar
MINUS(s(s(X'''''')), 0) -> IFMINUS(false, s(s(X'''''')), 0)
IFMINUS(false, s(s(X'''')), 0) -> MINUS(s(X''''), 0)
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
innermost
IFMINUS(false, s(s(X'''')), 0) -> MINUS(s(X''''), 0)
IFMINUS(x1, x2, x3) -> x2
s(x1) -> s(x1)
MINUS(x1, x2) -> x1
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 7
↳Nar
...
→DP Problem 18
↳Dependency Graph
→DP Problem 3
↳Nar
MINUS(s(s(X'''''')), 0) -> IFMINUS(false, s(s(X'''''')), 0)
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 3
↳Narrowing Transformation
QUOT(s(X), s(Y)) -> QUOT(minus(X, Y), s(Y))
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
innermost
two new Dependency Pairs are created:
QUOT(s(X), s(Y)) -> QUOT(minus(X, Y), s(Y))
QUOT(s(0), s(Y'')) -> QUOT(0, s(Y''))
QUOT(s(s(X'')), s(Y'')) -> QUOT(ifMinus(le(s(X''), Y''), s(X''), Y''), s(Y''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 3
↳Nar
→DP Problem 19
↳Narrowing Transformation
QUOT(s(s(X'')), s(Y'')) -> QUOT(ifMinus(le(s(X''), Y''), s(X''), Y''), s(Y''))
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
innermost
two new Dependency Pairs are created:
QUOT(s(s(X'')), s(Y'')) -> QUOT(ifMinus(le(s(X''), Y''), s(X''), Y''), s(Y''))
QUOT(s(s(X''')), s(0)) -> QUOT(ifMinus(false, s(X'''), 0), s(0))
QUOT(s(s(X''')), s(s(Y'))) -> QUOT(ifMinus(le(X''', Y'), s(X'''), s(Y')), s(s(Y')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 3
↳Nar
→DP Problem 19
↳Nar
...
→DP Problem 20
↳Rewriting Transformation
QUOT(s(s(X''')), s(0)) -> QUOT(ifMinus(false, s(X'''), 0), s(0))
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
innermost
one new Dependency Pair is created:
QUOT(s(s(X''')), s(0)) -> QUOT(ifMinus(false, s(X'''), 0), s(0))
QUOT(s(s(X''')), s(0)) -> QUOT(s(minus(X''', 0)), s(0))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 3
↳Nar
→DP Problem 19
↳Nar
...
→DP Problem 22
↳Narrowing Transformation
QUOT(s(s(X''')), s(0)) -> QUOT(s(minus(X''', 0)), s(0))
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
innermost
two new Dependency Pairs are created:
QUOT(s(s(X''')), s(0)) -> QUOT(s(minus(X''', 0)), s(0))
QUOT(s(s(0)), s(0)) -> QUOT(s(0), s(0))
QUOT(s(s(s(X'))), s(0)) -> QUOT(s(ifMinus(le(s(X'), 0), s(X'), 0)), s(0))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 3
↳Nar
→DP Problem 19
↳Nar
...
→DP Problem 24
↳Rewriting Transformation
QUOT(s(s(s(X'))), s(0)) -> QUOT(s(ifMinus(le(s(X'), 0), s(X'), 0)), s(0))
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
innermost
one new Dependency Pair is created:
QUOT(s(s(s(X'))), s(0)) -> QUOT(s(ifMinus(le(s(X'), 0), s(X'), 0)), s(0))
QUOT(s(s(s(X'))), s(0)) -> QUOT(s(ifMinus(false, s(X'), 0)), s(0))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 3
↳Nar
→DP Problem 19
↳Nar
...
→DP Problem 27
↳Rewriting Transformation
QUOT(s(s(s(X'))), s(0)) -> QUOT(s(ifMinus(false, s(X'), 0)), s(0))
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
innermost
one new Dependency Pair is created:
QUOT(s(s(s(X'))), s(0)) -> QUOT(s(ifMinus(false, s(X'), 0)), s(0))
QUOT(s(s(s(X'))), s(0)) -> QUOT(s(s(minus(X', 0))), s(0))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 3
↳Nar
→DP Problem 19
↳Nar
...
→DP Problem 46
↳Remaining Obligation(s)
QUOT(s(s(s(X'))), s(0)) -> QUOT(s(s(minus(X', 0))), s(0))
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
innermost
QUOT(s(s(s(X'))), s(s(0))) -> QUOT(s(ifMinus(le(X', 0), s(X'), s(0))), s(s(0)))
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
innermost
QUOT(s(s(s(s(s(X'))))), s(s(s(s(s(Y'')))))) -> QUOT(ifMinus(le(X', Y''), s(s(s(s(X')))), s(s(s(s(Y''))))), s(s(s(s(s(Y''))))))
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
innermost
QUOT(s(s(s(s(X'')))), s(s(s(0)))) -> QUOT(s(ifMinus(le(X'', 0), s(s(X'')), s(s(0)))), s(s(s(0))))
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
innermost
QUOT(s(s(s(s(s(X'))))), s(s(s(s(0))))) -> QUOT(s(ifMinus(le(X', 0), s(s(s(X'))), s(s(s(0))))), s(s(s(s(0)))))
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 3
↳Nar
→DP Problem 19
↳Nar
...
→DP Problem 21
↳Narrowing Transformation
QUOT(s(s(X''')), s(s(Y'))) -> QUOT(ifMinus(le(X''', Y'), s(X'''), s(Y')), s(s(Y')))
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
innermost
three new Dependency Pairs are created:
QUOT(s(s(X''')), s(s(Y'))) -> QUOT(ifMinus(le(X''', Y'), s(X'''), s(Y')), s(s(Y')))
QUOT(s(s(0)), s(s(Y''))) -> QUOT(ifMinus(true, s(0), s(Y'')), s(s(Y'')))
QUOT(s(s(s(X'))), s(s(0))) -> QUOT(ifMinus(false, s(s(X')), s(0)), s(s(0)))
QUOT(s(s(s(X'))), s(s(s(Y'')))) -> QUOT(ifMinus(le(X', Y''), s(s(X')), s(s(Y''))), s(s(s(Y''))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 3
↳Nar
→DP Problem 19
↳Nar
...
→DP Problem 23
↳Rewriting Transformation
QUOT(s(s(s(X'))), s(s(s(Y'')))) -> QUOT(ifMinus(le(X', Y''), s(s(X')), s(s(Y''))), s(s(s(Y''))))
QUOT(s(s(s(X'))), s(s(0))) -> QUOT(ifMinus(false, s(s(X')), s(0)), s(s(0)))
QUOT(s(s(0)), s(s(Y''))) -> QUOT(ifMinus(true, s(0), s(Y'')), s(s(Y'')))
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
innermost
one new Dependency Pair is created:
QUOT(s(s(0)), s(s(Y''))) -> QUOT(ifMinus(true, s(0), s(Y'')), s(s(Y'')))
QUOT(s(s(0)), s(s(Y''))) -> QUOT(0, s(s(Y'')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 3
↳Nar
→DP Problem 19
↳Nar
...
→DP Problem 25
↳Narrowing Transformation
QUOT(s(s(s(X'))), s(s(s(Y'')))) -> QUOT(ifMinus(le(X', Y''), s(s(X')), s(s(Y''))), s(s(s(Y''))))
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
innermost
three new Dependency Pairs are created:
QUOT(s(s(s(X'))), s(s(s(Y'')))) -> QUOT(ifMinus(le(X', Y''), s(s(X')), s(s(Y''))), s(s(s(Y''))))
QUOT(s(s(s(0))), s(s(s(Y''')))) -> QUOT(ifMinus(true, s(s(0)), s(s(Y'''))), s(s(s(Y'''))))
QUOT(s(s(s(s(X'')))), s(s(s(0)))) -> QUOT(ifMinus(false, s(s(s(X''))), s(s(0))), s(s(s(0))))
QUOT(s(s(s(s(X'')))), s(s(s(s(Y'))))) -> QUOT(ifMinus(le(X'', Y'), s(s(s(X''))), s(s(s(Y')))), s(s(s(s(Y')))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 3
↳Nar
→DP Problem 19
↳Nar
...
→DP Problem 28
↳Rewriting Transformation
QUOT(s(s(s(s(X'')))), s(s(s(s(Y'))))) -> QUOT(ifMinus(le(X'', Y'), s(s(s(X''))), s(s(s(Y')))), s(s(s(s(Y')))))
QUOT(s(s(s(s(X'')))), s(s(s(0)))) -> QUOT(ifMinus(false, s(s(s(X''))), s(s(0))), s(s(s(0))))
QUOT(s(s(s(0))), s(s(s(Y''')))) -> QUOT(ifMinus(true, s(s(0)), s(s(Y'''))), s(s(s(Y'''))))
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
innermost
one new Dependency Pair is created:
QUOT(s(s(s(0))), s(s(s(Y''')))) -> QUOT(ifMinus(true, s(s(0)), s(s(Y'''))), s(s(s(Y'''))))
QUOT(s(s(s(0))), s(s(s(Y''')))) -> QUOT(0, s(s(s(Y'''))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 3
↳Nar
→DP Problem 19
↳Nar
...
→DP Problem 31
↳Narrowing Transformation
QUOT(s(s(s(s(X'')))), s(s(s(s(Y'))))) -> QUOT(ifMinus(le(X'', Y'), s(s(s(X''))), s(s(s(Y')))), s(s(s(s(Y')))))
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
innermost
three new Dependency Pairs are created:
QUOT(s(s(s(s(X'')))), s(s(s(s(Y'))))) -> QUOT(ifMinus(le(X'', Y'), s(s(s(X''))), s(s(s(Y')))), s(s(s(s(Y')))))
QUOT(s(s(s(s(0)))), s(s(s(s(Y''))))) -> QUOT(ifMinus(true, s(s(s(0))), s(s(s(Y'')))), s(s(s(s(Y'')))))
QUOT(s(s(s(s(s(X'))))), s(s(s(s(0))))) -> QUOT(ifMinus(false, s(s(s(s(X')))), s(s(s(0)))), s(s(s(s(0)))))
QUOT(s(s(s(s(s(X'))))), s(s(s(s(s(Y'')))))) -> QUOT(ifMinus(le(X', Y''), s(s(s(s(X')))), s(s(s(s(Y''))))), s(s(s(s(s(Y''))))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 3
↳Nar
→DP Problem 19
↳Nar
...
→DP Problem 34
↳Rewriting Transformation
QUOT(s(s(s(s(s(X'))))), s(s(s(s(s(Y'')))))) -> QUOT(ifMinus(le(X', Y''), s(s(s(s(X')))), s(s(s(s(Y''))))), s(s(s(s(s(Y''))))))
QUOT(s(s(s(s(s(X'))))), s(s(s(s(0))))) -> QUOT(ifMinus(false, s(s(s(s(X')))), s(s(s(0)))), s(s(s(s(0)))))
QUOT(s(s(s(s(0)))), s(s(s(s(Y''))))) -> QUOT(ifMinus(true, s(s(s(0))), s(s(s(Y'')))), s(s(s(s(Y'')))))
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
innermost
one new Dependency Pair is created:
QUOT(s(s(s(s(0)))), s(s(s(s(Y''))))) -> QUOT(ifMinus(true, s(s(s(0))), s(s(s(Y'')))), s(s(s(s(Y'')))))
QUOT(s(s(s(s(0)))), s(s(s(s(Y''))))) -> QUOT(0, s(s(s(s(Y'')))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 3
↳Nar
→DP Problem 19
↳Nar
...
→DP Problem 46
↳Remaining Obligation(s)
QUOT(s(s(s(X'))), s(0)) -> QUOT(s(s(minus(X', 0))), s(0))
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
innermost
QUOT(s(s(s(X'))), s(s(0))) -> QUOT(s(ifMinus(le(X', 0), s(X'), s(0))), s(s(0)))
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
innermost
QUOT(s(s(s(s(s(X'))))), s(s(s(s(s(Y'')))))) -> QUOT(ifMinus(le(X', Y''), s(s(s(s(X')))), s(s(s(s(Y''))))), s(s(s(s(s(Y''))))))
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
innermost
QUOT(s(s(s(s(X'')))), s(s(s(0)))) -> QUOT(s(ifMinus(le(X'', 0), s(s(X'')), s(s(0)))), s(s(s(0))))
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
innermost
QUOT(s(s(s(s(s(X'))))), s(s(s(s(0))))) -> QUOT(s(ifMinus(le(X', 0), s(s(s(X'))), s(s(s(0))))), s(s(s(s(0)))))
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 3
↳Nar
→DP Problem 19
↳Nar
...
→DP Problem 38
↳Rewriting Transformation
QUOT(s(s(s(s(s(X'))))), s(s(s(s(0))))) -> QUOT(ifMinus(false, s(s(s(s(X')))), s(s(s(0)))), s(s(s(s(0)))))
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
innermost
one new Dependency Pair is created:
QUOT(s(s(s(s(s(X'))))), s(s(s(s(0))))) -> QUOT(ifMinus(false, s(s(s(s(X')))), s(s(s(0)))), s(s(s(s(0)))))
QUOT(s(s(s(s(s(X'))))), s(s(s(s(0))))) -> QUOT(s(minus(s(s(s(X'))), s(s(s(0))))), s(s(s(s(0)))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 3
↳Nar
→DP Problem 19
↳Nar
...
→DP Problem 40
↳Rewriting Transformation
QUOT(s(s(s(s(s(X'))))), s(s(s(s(0))))) -> QUOT(s(minus(s(s(s(X'))), s(s(s(0))))), s(s(s(s(0)))))
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
innermost
one new Dependency Pair is created:
QUOT(s(s(s(s(s(X'))))), s(s(s(s(0))))) -> QUOT(s(minus(s(s(s(X'))), s(s(s(0))))), s(s(s(s(0)))))
QUOT(s(s(s(s(s(X'))))), s(s(s(s(0))))) -> QUOT(s(ifMinus(le(s(s(s(X'))), s(s(s(0)))), s(s(s(X'))), s(s(s(0))))), s(s(s(s(0)))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 3
↳Nar
→DP Problem 19
↳Nar
...
→DP Problem 42
↳Rewriting Transformation
QUOT(s(s(s(s(s(X'))))), s(s(s(s(0))))) -> QUOT(s(ifMinus(le(s(s(s(X'))), s(s(s(0)))), s(s(s(X'))), s(s(s(0))))), s(s(s(s(0)))))
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
innermost
one new Dependency Pair is created:
QUOT(s(s(s(s(s(X'))))), s(s(s(s(0))))) -> QUOT(s(ifMinus(le(s(s(s(X'))), s(s(s(0)))), s(s(s(X'))), s(s(s(0))))), s(s(s(s(0)))))
QUOT(s(s(s(s(s(X'))))), s(s(s(s(0))))) -> QUOT(s(ifMinus(le(s(s(X')), s(s(0))), s(s(s(X'))), s(s(s(0))))), s(s(s(s(0)))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 3
↳Nar
→DP Problem 19
↳Nar
...
→DP Problem 44
↳Rewriting Transformation
QUOT(s(s(s(s(s(X'))))), s(s(s(s(0))))) -> QUOT(s(ifMinus(le(s(s(X')), s(s(0))), s(s(s(X'))), s(s(s(0))))), s(s(s(s(0)))))
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
innermost
one new Dependency Pair is created:
QUOT(s(s(s(s(s(X'))))), s(s(s(s(0))))) -> QUOT(s(ifMinus(le(s(s(X')), s(s(0))), s(s(s(X'))), s(s(s(0))))), s(s(s(s(0)))))
QUOT(s(s(s(s(s(X'))))), s(s(s(s(0))))) -> QUOT(s(ifMinus(le(s(X'), s(0)), s(s(s(X'))), s(s(s(0))))), s(s(s(s(0)))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 3
↳Nar
→DP Problem 19
↳Nar
...
→DP Problem 45
↳Rewriting Transformation
QUOT(s(s(s(s(s(X'))))), s(s(s(s(0))))) -> QUOT(s(ifMinus(le(s(X'), s(0)), s(s(s(X'))), s(s(s(0))))), s(s(s(s(0)))))
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
innermost
one new Dependency Pair is created:
QUOT(s(s(s(s(s(X'))))), s(s(s(s(0))))) -> QUOT(s(ifMinus(le(s(X'), s(0)), s(s(s(X'))), s(s(s(0))))), s(s(s(s(0)))))
QUOT(s(s(s(s(s(X'))))), s(s(s(s(0))))) -> QUOT(s(ifMinus(le(X', 0), s(s(s(X'))), s(s(s(0))))), s(s(s(s(0)))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 3
↳Nar
→DP Problem 19
↳Nar
...
→DP Problem 46
↳Remaining Obligation(s)
QUOT(s(s(s(X'))), s(0)) -> QUOT(s(s(minus(X', 0))), s(0))
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
innermost
QUOT(s(s(s(X'))), s(s(0))) -> QUOT(s(ifMinus(le(X', 0), s(X'), s(0))), s(s(0)))
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
innermost
QUOT(s(s(s(s(s(X'))))), s(s(s(s(s(Y'')))))) -> QUOT(ifMinus(le(X', Y''), s(s(s(s(X')))), s(s(s(s(Y''))))), s(s(s(s(s(Y''))))))
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
innermost
QUOT(s(s(s(s(X'')))), s(s(s(0)))) -> QUOT(s(ifMinus(le(X'', 0), s(s(X'')), s(s(0)))), s(s(s(0))))
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
innermost
QUOT(s(s(s(s(s(X'))))), s(s(s(s(0))))) -> QUOT(s(ifMinus(le(X', 0), s(s(s(X'))), s(s(s(0))))), s(s(s(s(0)))))
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 3
↳Nar
→DP Problem 19
↳Nar
...
→DP Problem 32
↳Rewriting Transformation
QUOT(s(s(s(s(X'')))), s(s(s(0)))) -> QUOT(ifMinus(false, s(s(s(X''))), s(s(0))), s(s(s(0))))
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
innermost
one new Dependency Pair is created:
QUOT(s(s(s(s(X'')))), s(s(s(0)))) -> QUOT(ifMinus(false, s(s(s(X''))), s(s(0))), s(s(s(0))))
QUOT(s(s(s(s(X'')))), s(s(s(0)))) -> QUOT(s(minus(s(s(X'')), s(s(0)))), s(s(s(0))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 3
↳Nar
→DP Problem 19
↳Nar
...
→DP Problem 35
↳Rewriting Transformation
QUOT(s(s(s(s(X'')))), s(s(s(0)))) -> QUOT(s(minus(s(s(X'')), s(s(0)))), s(s(s(0))))
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
innermost
one new Dependency Pair is created:
QUOT(s(s(s(s(X'')))), s(s(s(0)))) -> QUOT(s(minus(s(s(X'')), s(s(0)))), s(s(s(0))))
QUOT(s(s(s(s(X'')))), s(s(s(0)))) -> QUOT(s(ifMinus(le(s(s(X'')), s(s(0))), s(s(X'')), s(s(0)))), s(s(s(0))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 3
↳Nar
→DP Problem 19
↳Nar
...
→DP Problem 39
↳Rewriting Transformation
QUOT(s(s(s(s(X'')))), s(s(s(0)))) -> QUOT(s(ifMinus(le(s(s(X'')), s(s(0))), s(s(X'')), s(s(0)))), s(s(s(0))))
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
innermost
one new Dependency Pair is created:
QUOT(s(s(s(s(X'')))), s(s(s(0)))) -> QUOT(s(ifMinus(le(s(s(X'')), s(s(0))), s(s(X'')), s(s(0)))), s(s(s(0))))
QUOT(s(s(s(s(X'')))), s(s(s(0)))) -> QUOT(s(ifMinus(le(s(X''), s(0)), s(s(X'')), s(s(0)))), s(s(s(0))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 3
↳Nar
→DP Problem 19
↳Nar
...
→DP Problem 41
↳Rewriting Transformation
QUOT(s(s(s(s(X'')))), s(s(s(0)))) -> QUOT(s(ifMinus(le(s(X''), s(0)), s(s(X'')), s(s(0)))), s(s(s(0))))
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
innermost
one new Dependency Pair is created:
QUOT(s(s(s(s(X'')))), s(s(s(0)))) -> QUOT(s(ifMinus(le(s(X''), s(0)), s(s(X'')), s(s(0)))), s(s(s(0))))
QUOT(s(s(s(s(X'')))), s(s(s(0)))) -> QUOT(s(ifMinus(le(X'', 0), s(s(X'')), s(s(0)))), s(s(s(0))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 3
↳Nar
→DP Problem 19
↳Nar
...
→DP Problem 46
↳Remaining Obligation(s)
QUOT(s(s(s(X'))), s(0)) -> QUOT(s(s(minus(X', 0))), s(0))
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
innermost
QUOT(s(s(s(X'))), s(s(0))) -> QUOT(s(ifMinus(le(X', 0), s(X'), s(0))), s(s(0)))
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
innermost
QUOT(s(s(s(s(s(X'))))), s(s(s(s(s(Y'')))))) -> QUOT(ifMinus(le(X', Y''), s(s(s(s(X')))), s(s(s(s(Y''))))), s(s(s(s(s(Y''))))))
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
innermost
QUOT(s(s(s(s(X'')))), s(s(s(0)))) -> QUOT(s(ifMinus(le(X'', 0), s(s(X'')), s(s(0)))), s(s(s(0))))
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
innermost
QUOT(s(s(s(s(s(X'))))), s(s(s(s(0))))) -> QUOT(s(ifMinus(le(X', 0), s(s(s(X'))), s(s(s(0))))), s(s(s(s(0)))))
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 3
↳Nar
→DP Problem 19
↳Nar
...
→DP Problem 26
↳Rewriting Transformation
QUOT(s(s(s(X'))), s(s(0))) -> QUOT(ifMinus(false, s(s(X')), s(0)), s(s(0)))
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
innermost
one new Dependency Pair is created:
QUOT(s(s(s(X'))), s(s(0))) -> QUOT(ifMinus(false, s(s(X')), s(0)), s(s(0)))
QUOT(s(s(s(X'))), s(s(0))) -> QUOT(s(minus(s(X'), s(0))), s(s(0)))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 3
↳Nar
→DP Problem 19
↳Nar
...
→DP Problem 29
↳Rewriting Transformation
QUOT(s(s(s(X'))), s(s(0))) -> QUOT(s(minus(s(X'), s(0))), s(s(0)))
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
innermost
one new Dependency Pair is created:
QUOT(s(s(s(X'))), s(s(0))) -> QUOT(s(minus(s(X'), s(0))), s(s(0)))
QUOT(s(s(s(X'))), s(s(0))) -> QUOT(s(ifMinus(le(s(X'), s(0)), s(X'), s(0))), s(s(0)))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 3
↳Nar
→DP Problem 19
↳Nar
...
→DP Problem 33
↳Rewriting Transformation
QUOT(s(s(s(X'))), s(s(0))) -> QUOT(s(ifMinus(le(s(X'), s(0)), s(X'), s(0))), s(s(0)))
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
innermost
one new Dependency Pair is created:
QUOT(s(s(s(X'))), s(s(0))) -> QUOT(s(ifMinus(le(s(X'), s(0)), s(X'), s(0))), s(s(0)))
QUOT(s(s(s(X'))), s(s(0))) -> QUOT(s(ifMinus(le(X', 0), s(X'), s(0))), s(s(0)))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 3
↳Nar
→DP Problem 19
↳Nar
...
→DP Problem 46
↳Remaining Obligation(s)
QUOT(s(s(s(X'))), s(0)) -> QUOT(s(s(minus(X', 0))), s(0))
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
innermost
QUOT(s(s(s(X'))), s(s(0))) -> QUOT(s(ifMinus(le(X', 0), s(X'), s(0))), s(s(0)))
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
innermost
QUOT(s(s(s(s(s(X'))))), s(s(s(s(s(Y'')))))) -> QUOT(ifMinus(le(X', Y''), s(s(s(s(X')))), s(s(s(s(Y''))))), s(s(s(s(s(Y''))))))
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
innermost
QUOT(s(s(s(s(X'')))), s(s(s(0)))) -> QUOT(s(ifMinus(le(X'', 0), s(s(X'')), s(s(0)))), s(s(s(0))))
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
innermost
QUOT(s(s(s(s(s(X'))))), s(s(s(s(0))))) -> QUOT(s(ifMinus(le(X', 0), s(s(s(X'))), s(s(s(0))))), s(s(s(s(0)))))
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
innermost