R
↳Dependency Pair Analysis
LE(s(X), s(Y)) -> LE(X, Y)
MINUS(s(X), Y) -> IFMINUS(le(s(X), Y), s(X), Y)
MINUS(s(X), Y) -> LE(s(X), Y)
IFMINUS(false, s(X), Y) -> MINUS(X, Y)
QUOT(s(X), s(Y)) -> QUOT(minus(X, Y), s(Y))
QUOT(s(X), s(Y)) -> MINUS(X, Y)
R
↳DPs
→DP Problem 1
↳Forward Instantiation Transformation
→DP Problem 2
↳Nar
→DP Problem 3
↳Nar
LE(s(X), s(Y)) -> LE(X, Y)
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
innermost
one new Dependency Pair is created:
LE(s(X), s(Y)) -> LE(X, Y)
LE(s(s(X'')), s(s(Y''))) -> LE(s(X''), s(Y''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 4
↳Forward Instantiation Transformation
→DP Problem 2
↳Nar
→DP Problem 3
↳Nar
LE(s(s(X'')), s(s(Y''))) -> LE(s(X''), s(Y''))
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
innermost
one new Dependency Pair is created:
LE(s(s(X'')), s(s(Y''))) -> LE(s(X''), s(Y''))
LE(s(s(s(X''''))), s(s(s(Y'''')))) -> LE(s(s(X'''')), s(s(Y'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 4
↳FwdInst
...
→DP Problem 5
↳Argument Filtering and Ordering
→DP Problem 2
↳Nar
→DP Problem 3
↳Nar
LE(s(s(s(X''''))), s(s(s(Y'''')))) -> LE(s(s(X'''')), s(s(Y'''')))
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
innermost
LE(s(s(s(X''''))), s(s(s(Y'''')))) -> LE(s(s(X'''')), s(s(Y'''')))
POL(LE(x1, x2)) = 1 + x1 + x2 POL(s(x1)) = 1 + x1
LE(x1, x2) -> LE(x1, x2)
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 4
↳FwdInst
...
→DP Problem 6
↳Dependency Graph
→DP Problem 2
↳Nar
→DP Problem 3
↳Nar
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Narrowing Transformation
→DP Problem 3
↳Nar
IFMINUS(false, s(X), Y) -> MINUS(X, Y)
MINUS(s(X), Y) -> IFMINUS(le(s(X), Y), s(X), Y)
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
innermost
two new Dependency Pairs are created:
MINUS(s(X), Y) -> IFMINUS(le(s(X), Y), s(X), Y)
MINUS(s(X''), 0) -> IFMINUS(false, s(X''), 0)
MINUS(s(X''), s(Y'')) -> IFMINUS(le(X'', Y''), s(X''), s(Y''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 7
↳Narrowing Transformation
→DP Problem 3
↳Nar
MINUS(s(X''), s(Y'')) -> IFMINUS(le(X'', Y''), s(X''), s(Y''))
MINUS(s(X''), 0) -> IFMINUS(false, s(X''), 0)
IFMINUS(false, s(X), Y) -> MINUS(X, Y)
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
innermost
three new Dependency Pairs are created:
MINUS(s(X''), s(Y'')) -> IFMINUS(le(X'', Y''), s(X''), s(Y''))
MINUS(s(0), s(Y''')) -> IFMINUS(true, s(0), s(Y'''))
MINUS(s(s(X')), s(0)) -> IFMINUS(false, s(s(X')), s(0))
MINUS(s(s(X')), s(s(Y'))) -> IFMINUS(le(X', Y'), s(s(X')), s(s(Y')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 7
↳Nar
...
→DP Problem 8
↳Instantiation Transformation
→DP Problem 3
↳Nar
MINUS(s(s(X')), s(s(Y'))) -> IFMINUS(le(X', Y'), s(s(X')), s(s(Y')))
MINUS(s(s(X')), s(0)) -> IFMINUS(false, s(s(X')), s(0))
IFMINUS(false, s(X), Y) -> MINUS(X, Y)
MINUS(s(X''), 0) -> IFMINUS(false, s(X''), 0)
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
innermost
three new Dependency Pairs are created:
IFMINUS(false, s(X), Y) -> MINUS(X, Y)
IFMINUS(false, s(X'), 0) -> MINUS(X', 0)
IFMINUS(false, s(s(X''')), s(0)) -> MINUS(s(X'''), s(0))
IFMINUS(false, s(s(X''')), s(s(Y'''))) -> MINUS(s(X'''), s(s(Y''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 7
↳Nar
...
→DP Problem 9
↳Forward Instantiation Transformation
→DP Problem 3
↳Nar
IFMINUS(false, s(s(X''')), s(s(Y'''))) -> MINUS(s(X'''), s(s(Y''')))
MINUS(s(s(X')), s(s(Y'))) -> IFMINUS(le(X', Y'), s(s(X')), s(s(Y')))
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
innermost
one new Dependency Pair is created:
IFMINUS(false, s(s(X''')), s(s(Y'''))) -> MINUS(s(X'''), s(s(Y''')))
IFMINUS(false, s(s(s(X''''))), s(s(Y''''))) -> MINUS(s(s(X'''')), s(s(Y'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 7
↳Nar
...
→DP Problem 12
↳Argument Filtering and Ordering
→DP Problem 3
↳Nar
IFMINUS(false, s(s(s(X''''))), s(s(Y''''))) -> MINUS(s(s(X'''')), s(s(Y'''')))
MINUS(s(s(X')), s(s(Y'))) -> IFMINUS(le(X', Y'), s(s(X')), s(s(Y')))
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
innermost
IFMINUS(false, s(s(s(X''''))), s(s(Y''''))) -> MINUS(s(s(X'''')), s(s(Y'''')))
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
POL(IFMINUS(x1, x2, x3)) = x1 + x2 + x3 POL(false) = 0 POL(MINUS(x1, x2)) = x1 + x2 POL(true) = 0 POL(s(x1)) = 1 + x1 POL(le) = 0
IFMINUS(x1, x2, x3) -> IFMINUS(x1, x2, x3)
MINUS(x1, x2) -> MINUS(x1, x2)
s(x1) -> s(x1)
le(x1, x2) -> le
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 7
↳Nar
...
→DP Problem 16
↳Dependency Graph
→DP Problem 3
↳Nar
MINUS(s(s(X')), s(s(Y'))) -> IFMINUS(le(X', Y'), s(s(X')), s(s(Y')))
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 7
↳Nar
...
→DP Problem 10
↳Forward Instantiation Transformation
→DP Problem 3
↳Nar
IFMINUS(false, s(s(X''')), s(0)) -> MINUS(s(X'''), s(0))
MINUS(s(s(X')), s(0)) -> IFMINUS(false, s(s(X')), s(0))
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
innermost
one new Dependency Pair is created:
IFMINUS(false, s(s(X''')), s(0)) -> MINUS(s(X'''), s(0))
IFMINUS(false, s(s(s(X''''))), s(0)) -> MINUS(s(s(X'''')), s(0))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 7
↳Nar
...
→DP Problem 13
↳Argument Filtering and Ordering
→DP Problem 3
↳Nar
IFMINUS(false, s(s(s(X''''))), s(0)) -> MINUS(s(s(X'''')), s(0))
MINUS(s(s(X')), s(0)) -> IFMINUS(false, s(s(X')), s(0))
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
innermost
MINUS(s(s(X')), s(0)) -> IFMINUS(false, s(s(X')), s(0))
POL(0) = 0 POL(IFMINUS(x1, x2, x3)) = x1 + x2 + x3 POL(false) = 0 POL(MINUS(x1, x2)) = 1 + x1 + x2 POL(s(x1)) = 1 + x1
MINUS(x1, x2) -> MINUS(x1, x2)
IFMINUS(x1, x2, x3) -> IFMINUS(x1, x2, x3)
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 7
↳Nar
...
→DP Problem 17
↳Dependency Graph
→DP Problem 3
↳Nar
IFMINUS(false, s(s(s(X''''))), s(0)) -> MINUS(s(s(X'''')), s(0))
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 7
↳Nar
...
→DP Problem 11
↳Forward Instantiation Transformation
→DP Problem 3
↳Nar
IFMINUS(false, s(X'), 0) -> MINUS(X', 0)
MINUS(s(X''), 0) -> IFMINUS(false, s(X''), 0)
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
innermost
one new Dependency Pair is created:
IFMINUS(false, s(X'), 0) -> MINUS(X', 0)
IFMINUS(false, s(s(X'''')), 0) -> MINUS(s(X''''), 0)
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 7
↳Nar
...
→DP Problem 14
↳Forward Instantiation Transformation
→DP Problem 3
↳Nar
IFMINUS(false, s(s(X'''')), 0) -> MINUS(s(X''''), 0)
MINUS(s(X''), 0) -> IFMINUS(false, s(X''), 0)
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
innermost
one new Dependency Pair is created:
MINUS(s(X''), 0) -> IFMINUS(false, s(X''), 0)
MINUS(s(s(X'''''')), 0) -> IFMINUS(false, s(s(X'''''')), 0)
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 7
↳Nar
...
→DP Problem 15
↳Argument Filtering and Ordering
→DP Problem 3
↳Nar
MINUS(s(s(X'''''')), 0) -> IFMINUS(false, s(s(X'''''')), 0)
IFMINUS(false, s(s(X'''')), 0) -> MINUS(s(X''''), 0)
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
innermost
IFMINUS(false, s(s(X'''')), 0) -> MINUS(s(X''''), 0)
POL(0) = 0 POL(IFMINUS(x1, x2, x3)) = x1 + x2 + x3 POL(false) = 0 POL(MINUS(x1, x2)) = x1 + x2 POL(s(x1)) = 1 + x1
IFMINUS(x1, x2, x3) -> IFMINUS(x1, x2, x3)
MINUS(x1, x2) -> MINUS(x1, x2)
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 7
↳Nar
...
→DP Problem 18
↳Dependency Graph
→DP Problem 3
↳Nar
MINUS(s(s(X'''''')), 0) -> IFMINUS(false, s(s(X'''''')), 0)
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 3
↳Narrowing Transformation
QUOT(s(X), s(Y)) -> QUOT(minus(X, Y), s(Y))
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
innermost
two new Dependency Pairs are created:
QUOT(s(X), s(Y)) -> QUOT(minus(X, Y), s(Y))
QUOT(s(0), s(Y'')) -> QUOT(0, s(Y''))
QUOT(s(s(X'')), s(Y'')) -> QUOT(ifMinus(le(s(X''), Y''), s(X''), Y''), s(Y''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 3
↳Nar
→DP Problem 19
↳Narrowing Transformation
QUOT(s(s(X'')), s(Y'')) -> QUOT(ifMinus(le(s(X''), Y''), s(X''), Y''), s(Y''))
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
innermost
two new Dependency Pairs are created:
QUOT(s(s(X'')), s(Y'')) -> QUOT(ifMinus(le(s(X''), Y''), s(X''), Y''), s(Y''))
QUOT(s(s(X''')), s(0)) -> QUOT(ifMinus(false, s(X'''), 0), s(0))
QUOT(s(s(X''')), s(s(Y'))) -> QUOT(ifMinus(le(X''', Y'), s(X'''), s(Y')), s(s(Y')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 3
↳Nar
→DP Problem 19
↳Nar
...
→DP Problem 20
↳Rewriting Transformation
QUOT(s(s(X''')), s(0)) -> QUOT(ifMinus(false, s(X'''), 0), s(0))
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
innermost
one new Dependency Pair is created:
QUOT(s(s(X''')), s(0)) -> QUOT(ifMinus(false, s(X'''), 0), s(0))
QUOT(s(s(X''')), s(0)) -> QUOT(s(minus(X''', 0)), s(0))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 3
↳Nar
→DP Problem 19
↳Nar
...
→DP Problem 22
↳Argument Filtering and Ordering
QUOT(s(s(X''')), s(0)) -> QUOT(s(minus(X''', 0)), s(0))
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
innermost
QUOT(s(s(X''')), s(0)) -> QUOT(s(minus(X''', 0)), s(0))
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
POL(QUOT(x1, x2)) = 1 + x1 + x2 POL(0) = 0 POL(false) = 0 POL(minus(x1, x2)) = x1 + x2 POL(true) = 0 POL(s(x1)) = 1 + x1 POL(le) = 0 POL(ifMinus(x1, x2, x3)) = x1 + x2 + x3
QUOT(x1, x2) -> QUOT(x1, x2)
s(x1) -> s(x1)
minus(x1, x2) -> minus(x1, x2)
ifMinus(x1, x2, x3) -> ifMinus(x1, x2, x3)
le(x1, x2) -> le
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 3
↳Nar
→DP Problem 19
↳Nar
...
→DP Problem 21
↳Argument Filtering and Ordering
QUOT(s(s(X''')), s(s(Y'))) -> QUOT(ifMinus(le(X''', Y'), s(X'''), s(Y')), s(s(Y')))
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
innermost
QUOT(s(s(X''')), s(s(Y'))) -> QUOT(ifMinus(le(X''', Y'), s(X'''), s(Y')), s(s(Y')))
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
POL(QUOT(x1, x2)) = 1 + x1 + x2 POL(0) = 0 POL(false) = 0 POL(true) = 0 POL(s(x1)) = 1 + x1 POL(le(x1, x2)) = x1 + x2
QUOT(x1, x2) -> QUOT(x1, x2)
s(x1) -> s(x1)
ifMinus(x1, x2, x3) -> x2
minus(x1, x2) -> x1
le(x1, x2) -> le(x1, x2)
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 3
↳Nar
→DP Problem 19
↳Nar
...
→DP Problem 23
↳Dependency Graph
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
innermost