R
↳Dependency Pair Analysis
LE(s(X), s(Y)) -> LE(X, Y)
MINUS(s(X), Y) -> IFMINUS(le(s(X), Y), s(X), Y)
MINUS(s(X), Y) -> LE(s(X), Y)
IFMINUS(false, s(X), Y) -> MINUS(X, Y)
QUOT(s(X), s(Y)) -> QUOT(minus(X, Y), s(Y))
QUOT(s(X), s(Y)) -> MINUS(X, Y)
R
↳DPs
→DP Problem 1
↳Argument Filtering and Ordering
→DP Problem 2
↳Nar
→DP Problem 3
↳Remaining
LE(s(X), s(Y)) -> LE(X, Y)
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
innermost
LE(s(X), s(Y)) -> LE(X, Y)
LE(x1, x2) -> LE(x1, x2)
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 4
↳Dependency Graph
→DP Problem 2
↳Nar
→DP Problem 3
↳Remaining
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
innermost
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳Narrowing Transformation
→DP Problem 3
↳Remaining
IFMINUS(false, s(X), Y) -> MINUS(X, Y)
MINUS(s(X), Y) -> IFMINUS(le(s(X), Y), s(X), Y)
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
innermost
two new Dependency Pairs are created:
MINUS(s(X), Y) -> IFMINUS(le(s(X), Y), s(X), Y)
MINUS(s(X''), 0) -> IFMINUS(false, s(X''), 0)
MINUS(s(X''), s(Y'')) -> IFMINUS(le(X'', Y''), s(X''), s(Y''))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳Nar
→DP Problem 5
↳Instantiation Transformation
→DP Problem 3
↳Remaining
MINUS(s(X''), s(Y'')) -> IFMINUS(le(X'', Y''), s(X''), s(Y''))
MINUS(s(X''), 0) -> IFMINUS(false, s(X''), 0)
IFMINUS(false, s(X), Y) -> MINUS(X, Y)
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
innermost
two new Dependency Pairs are created:
IFMINUS(false, s(X), Y) -> MINUS(X, Y)
IFMINUS(false, s(X'), 0) -> MINUS(X', 0)
IFMINUS(false, s(X'), s(Y'''')) -> MINUS(X', s(Y''''))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳Nar
→DP Problem 5
↳Inst
...
→DP Problem 6
↳Forward Instantiation Transformation
→DP Problem 3
↳Remaining
IFMINUS(false, s(X'), s(Y'''')) -> MINUS(X', s(Y''''))
MINUS(s(X''), s(Y'')) -> IFMINUS(le(X'', Y''), s(X''), s(Y''))
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
innermost
one new Dependency Pair is created:
IFMINUS(false, s(X'), s(Y'''')) -> MINUS(X', s(Y''''))
IFMINUS(false, s(s(X'''')), s(Y''''')) -> MINUS(s(X''''), s(Y'''''))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳Nar
→DP Problem 5
↳Inst
...
→DP Problem 8
↳Forward Instantiation Transformation
→DP Problem 3
↳Remaining
IFMINUS(false, s(s(X'''')), s(Y''''')) -> MINUS(s(X''''), s(Y'''''))
MINUS(s(X''), s(Y'')) -> IFMINUS(le(X'', Y''), s(X''), s(Y''))
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
innermost
one new Dependency Pair is created:
MINUS(s(X''), s(Y'')) -> IFMINUS(le(X'', Y''), s(X''), s(Y''))
MINUS(s(s(X'''''')), s(Y''')) -> IFMINUS(le(s(X''''''), Y'''), s(s(X'''''')), s(Y'''))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳Nar
→DP Problem 3
↳Remaining Obligation(s)
MINUS(s(s(X'''''')), s(Y''')) -> IFMINUS(le(s(X''''''), Y'''), s(s(X'''''')), s(Y'''))
IFMINUS(false, s(s(X'''')), s(Y''''')) -> MINUS(s(X''''), s(Y'''''))
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
innermost
QUOT(s(X), s(Y)) -> QUOT(minus(X, Y), s(Y))
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
innermost
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳Nar
→DP Problem 5
↳Inst
...
→DP Problem 7
↳Forward Instantiation Transformation
→DP Problem 3
↳Remaining
IFMINUS(false, s(X'), 0) -> MINUS(X', 0)
MINUS(s(X''), 0) -> IFMINUS(false, s(X''), 0)
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
innermost
one new Dependency Pair is created:
IFMINUS(false, s(X'), 0) -> MINUS(X', 0)
IFMINUS(false, s(s(X'''')), 0) -> MINUS(s(X''''), 0)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳Nar
→DP Problem 5
↳Inst
...
→DP Problem 9
↳Forward Instantiation Transformation
→DP Problem 3
↳Remaining
IFMINUS(false, s(s(X'''')), 0) -> MINUS(s(X''''), 0)
MINUS(s(X''), 0) -> IFMINUS(false, s(X''), 0)
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
innermost
one new Dependency Pair is created:
MINUS(s(X''), 0) -> IFMINUS(false, s(X''), 0)
MINUS(s(s(X'''''')), 0) -> IFMINUS(false, s(s(X'''''')), 0)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳Nar
→DP Problem 5
↳Inst
...
→DP Problem 11
↳Argument Filtering and Ordering
→DP Problem 3
↳Remaining
MINUS(s(s(X'''''')), 0) -> IFMINUS(false, s(s(X'''''')), 0)
IFMINUS(false, s(s(X'''')), 0) -> MINUS(s(X''''), 0)
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
innermost
IFMINUS(false, s(s(X'''')), 0) -> MINUS(s(X''''), 0)
IFMINUS(x1, x2, x3) -> x2
s(x1) -> s(x1)
MINUS(x1, x2) -> x1
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳Nar
→DP Problem 5
↳Inst
...
→DP Problem 12
↳Dependency Graph
→DP Problem 3
↳Remaining
MINUS(s(s(X'''''')), 0) -> IFMINUS(false, s(s(X'''''')), 0)
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
innermost
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳Nar
→DP Problem 3
↳Remaining Obligation(s)
MINUS(s(s(X'''''')), s(Y''')) -> IFMINUS(le(s(X''''''), Y'''), s(s(X'''''')), s(Y'''))
IFMINUS(false, s(s(X'''')), s(Y''''')) -> MINUS(s(X''''), s(Y'''''))
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
innermost
QUOT(s(X), s(Y)) -> QUOT(minus(X, Y), s(Y))
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
innermost