Term Rewriting System R:
[Y, X]
le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))

Innermost Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

LE(s(X), s(Y)) -> LE(X, Y)
MINUS(s(X), Y) -> IFMINUS(le(s(X), Y), s(X), Y)
MINUS(s(X), Y) -> LE(s(X), Y)
IFMINUS(false, s(X), Y) -> MINUS(X, Y)
QUOT(s(X), s(Y)) -> QUOT(minus(X, Y), s(Y))
QUOT(s(X), s(Y)) -> MINUS(X, Y)

Furthermore, R contains three SCCs.


   R
DPs
       →DP Problem 1
Forward Instantiation Transformation
       →DP Problem 2
Nar
       →DP Problem 3
Remaining


Dependency Pair:

LE(s(X), s(Y)) -> LE(X, Y)


Rules:


le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

LE(s(X), s(Y)) -> LE(X, Y)
one new Dependency Pair is created:

LE(s(s(X'')), s(s(Y''))) -> LE(s(X''), s(Y''))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
           →DP Problem 4
Forward Instantiation Transformation
       →DP Problem 2
Nar
       →DP Problem 3
Remaining


Dependency Pair:

LE(s(s(X'')), s(s(Y''))) -> LE(s(X''), s(Y''))


Rules:


le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

LE(s(s(X'')), s(s(Y''))) -> LE(s(X''), s(Y''))
one new Dependency Pair is created:

LE(s(s(s(X''''))), s(s(s(Y'''')))) -> LE(s(s(X'''')), s(s(Y'''')))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
           →DP Problem 4
FwdInst
             ...
               →DP Problem 5
Argument Filtering and Ordering
       →DP Problem 2
Nar
       →DP Problem 3
Remaining


Dependency Pair:

LE(s(s(s(X''''))), s(s(s(Y'''')))) -> LE(s(s(X'''')), s(s(Y'''')))


Rules:


le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))


Strategy:

innermost




The following dependency pair can be strictly oriented:

LE(s(s(s(X''''))), s(s(s(Y'''')))) -> LE(s(s(X'''')), s(s(Y'''')))


There are no usable rules for innermost that need to be oriented.
Used ordering: Homeomorphic Embedding Order with EMB
resulting in one new DP problem.
Used Argument Filtering System:
LE(x1, x2) -> LE(x1, x2)
s(x1) -> s(x1)


   R
DPs
       →DP Problem 1
FwdInst
           →DP Problem 4
FwdInst
             ...
               →DP Problem 6
Dependency Graph
       →DP Problem 2
Nar
       →DP Problem 3
Remaining


Dependency Pair:


Rules:


le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Narrowing Transformation
       →DP Problem 3
Remaining


Dependency Pairs:

IFMINUS(false, s(X), Y) -> MINUS(X, Y)
MINUS(s(X), Y) -> IFMINUS(le(s(X), Y), s(X), Y)


Rules:


le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))


Strategy:

innermost




On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

MINUS(s(X), Y) -> IFMINUS(le(s(X), Y), s(X), Y)
two new Dependency Pairs are created:

MINUS(s(X''), 0) -> IFMINUS(false, s(X''), 0)
MINUS(s(X''), s(Y'')) -> IFMINUS(le(X'', Y''), s(X''), s(Y''))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 7
Narrowing Transformation
       →DP Problem 3
Remaining


Dependency Pairs:

MINUS(s(X''), s(Y'')) -> IFMINUS(le(X'', Y''), s(X''), s(Y''))
MINUS(s(X''), 0) -> IFMINUS(false, s(X''), 0)
IFMINUS(false, s(X), Y) -> MINUS(X, Y)


Rules:


le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))


Strategy:

innermost




On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

MINUS(s(X''), s(Y'')) -> IFMINUS(le(X'', Y''), s(X''), s(Y''))
three new Dependency Pairs are created:

MINUS(s(0), s(Y''')) -> IFMINUS(true, s(0), s(Y'''))
MINUS(s(s(X')), s(0)) -> IFMINUS(false, s(s(X')), s(0))
MINUS(s(s(X')), s(s(Y'))) -> IFMINUS(le(X', Y'), s(s(X')), s(s(Y')))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 7
Nar
             ...
               →DP Problem 8
Instantiation Transformation
       →DP Problem 3
Remaining


Dependency Pairs:

MINUS(s(s(X')), s(s(Y'))) -> IFMINUS(le(X', Y'), s(s(X')), s(s(Y')))
MINUS(s(s(X')), s(0)) -> IFMINUS(false, s(s(X')), s(0))
IFMINUS(false, s(X), Y) -> MINUS(X, Y)
MINUS(s(X''), 0) -> IFMINUS(false, s(X''), 0)


Rules:


le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))


Strategy:

innermost




On this DP problem, an Instantiation SCC transformation can be performed.
As a result of transforming the rule

IFMINUS(false, s(X), Y) -> MINUS(X, Y)
three new Dependency Pairs are created:

IFMINUS(false, s(X'), 0) -> MINUS(X', 0)
IFMINUS(false, s(s(X''')), s(0)) -> MINUS(s(X'''), s(0))
IFMINUS(false, s(s(X''')), s(s(Y'''))) -> MINUS(s(X'''), s(s(Y''')))

The transformation is resulting in three new DP problems:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 7
Nar
             ...
               →DP Problem 9
Forward Instantiation Transformation
       →DP Problem 3
Remaining


Dependency Pairs:

IFMINUS(false, s(s(X''')), s(s(Y'''))) -> MINUS(s(X'''), s(s(Y''')))
MINUS(s(s(X')), s(s(Y'))) -> IFMINUS(le(X', Y'), s(s(X')), s(s(Y')))


Rules:


le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

IFMINUS(false, s(s(X''')), s(s(Y'''))) -> MINUS(s(X'''), s(s(Y''')))
one new Dependency Pair is created:

IFMINUS(false, s(s(s(X''''))), s(s(Y''''))) -> MINUS(s(s(X'''')), s(s(Y'''')))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 7
Nar
             ...
               →DP Problem 12
Narrowing Transformation
       →DP Problem 3
Remaining


Dependency Pairs:

IFMINUS(false, s(s(s(X''''))), s(s(Y''''))) -> MINUS(s(s(X'''')), s(s(Y'''')))
MINUS(s(s(X')), s(s(Y'))) -> IFMINUS(le(X', Y'), s(s(X')), s(s(Y')))


Rules:


le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))


Strategy:

innermost




On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

MINUS(s(s(X')), s(s(Y'))) -> IFMINUS(le(X', Y'), s(s(X')), s(s(Y')))
three new Dependency Pairs are created:

MINUS(s(s(0)), s(s(Y''))) -> IFMINUS(true, s(s(0)), s(s(Y'')))
MINUS(s(s(s(X''))), s(s(0))) -> IFMINUS(false, s(s(s(X''))), s(s(0)))
MINUS(s(s(s(X''))), s(s(s(Y'')))) -> IFMINUS(le(X'', Y''), s(s(s(X''))), s(s(s(Y''))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 7
Nar
             ...
               →DP Problem 18
Narrowing Transformation
       →DP Problem 3
Remaining


Dependency Pairs:

MINUS(s(s(s(X''))), s(s(s(Y'')))) -> IFMINUS(le(X'', Y''), s(s(s(X''))), s(s(s(Y''))))
MINUS(s(s(s(X''))), s(s(0))) -> IFMINUS(false, s(s(s(X''))), s(s(0)))
IFMINUS(false, s(s(s(X''''))), s(s(Y''''))) -> MINUS(s(s(X'''')), s(s(Y'''')))


Rules:


le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))


Strategy:

innermost




On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

MINUS(s(s(s(X''))), s(s(s(Y'')))) -> IFMINUS(le(X'', Y''), s(s(s(X''))), s(s(s(Y''))))
three new Dependency Pairs are created:

MINUS(s(s(s(0))), s(s(s(Y''')))) -> IFMINUS(true, s(s(s(0))), s(s(s(Y'''))))
MINUS(s(s(s(s(X')))), s(s(s(0)))) -> IFMINUS(false, s(s(s(s(X')))), s(s(s(0))))
MINUS(s(s(s(s(X')))), s(s(s(s(Y'))))) -> IFMINUS(le(X', Y'), s(s(s(s(X')))), s(s(s(s(Y')))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 7
Nar
             ...
               →DP Problem 19
Narrowing Transformation
       →DP Problem 3
Remaining


Dependency Pairs:

MINUS(s(s(s(s(X')))), s(s(s(s(Y'))))) -> IFMINUS(le(X', Y'), s(s(s(s(X')))), s(s(s(s(Y')))))
MINUS(s(s(s(s(X')))), s(s(s(0)))) -> IFMINUS(false, s(s(s(s(X')))), s(s(s(0))))
IFMINUS(false, s(s(s(X''''))), s(s(Y''''))) -> MINUS(s(s(X'''')), s(s(Y'''')))
MINUS(s(s(s(X''))), s(s(0))) -> IFMINUS(false, s(s(s(X''))), s(s(0)))


Rules:


le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))


Strategy:

innermost




On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

MINUS(s(s(s(s(X')))), s(s(s(s(Y'))))) -> IFMINUS(le(X', Y'), s(s(s(s(X')))), s(s(s(s(Y')))))
three new Dependency Pairs are created:

MINUS(s(s(s(s(0)))), s(s(s(s(Y''))))) -> IFMINUS(true, s(s(s(s(0)))), s(s(s(s(Y'')))))
MINUS(s(s(s(s(s(X''))))), s(s(s(s(0))))) -> IFMINUS(false, s(s(s(s(s(X''))))), s(s(s(s(0)))))
MINUS(s(s(s(s(s(X''))))), s(s(s(s(s(Y'')))))) -> IFMINUS(le(X'', Y''), s(s(s(s(s(X''))))), s(s(s(s(s(Y''))))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 7
Nar
             ...
               →DP Problem 20
Instantiation Transformation
       →DP Problem 3
Remaining


Dependency Pairs:

MINUS(s(s(s(s(s(X''))))), s(s(s(s(s(Y'')))))) -> IFMINUS(le(X'', Y''), s(s(s(s(s(X''))))), s(s(s(s(s(Y''))))))
MINUS(s(s(s(s(s(X''))))), s(s(s(s(0))))) -> IFMINUS(false, s(s(s(s(s(X''))))), s(s(s(s(0)))))
MINUS(s(s(s(X''))), s(s(0))) -> IFMINUS(false, s(s(s(X''))), s(s(0)))
IFMINUS(false, s(s(s(X''''))), s(s(Y''''))) -> MINUS(s(s(X'''')), s(s(Y'''')))
MINUS(s(s(s(s(X')))), s(s(s(0)))) -> IFMINUS(false, s(s(s(s(X')))), s(s(s(0))))


Rules:


le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))


Strategy:

innermost




On this DP problem, an Instantiation SCC transformation can be performed.
As a result of transforming the rule

IFMINUS(false, s(s(s(X''''))), s(s(Y''''))) -> MINUS(s(s(X'''')), s(s(Y'''')))
four new Dependency Pairs are created:

IFMINUS(false, s(s(s(X'''''))), s(s(0))) -> MINUS(s(s(X''''')), s(s(0)))
IFMINUS(false, s(s(s(s(X''')))), s(s(s(0)))) -> MINUS(s(s(s(X'''))), s(s(s(0))))
IFMINUS(false, s(s(s(s(s(X'''''))))), s(s(s(s(0))))) -> MINUS(s(s(s(s(X''''')))), s(s(s(s(0)))))
IFMINUS(false, s(s(s(s(s(X'''''))))), s(s(s(s(s(Y''''')))))) -> MINUS(s(s(s(s(X''''')))), s(s(s(s(s(Y'''''))))))

The transformation is resulting in four new DP problems:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 7
Nar
             ...
               →DP Problem 21
Forward Instantiation Transformation
       →DP Problem 3
Remaining


Dependency Pairs:

IFMINUS(false, s(s(s(s(s(X'''''))))), s(s(s(s(s(Y''''')))))) -> MINUS(s(s(s(s(X''''')))), s(s(s(s(s(Y'''''))))))
MINUS(s(s(s(s(s(X''))))), s(s(s(s(s(Y'')))))) -> IFMINUS(le(X'', Y''), s(s(s(s(s(X''))))), s(s(s(s(s(Y''))))))


Rules:


le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

IFMINUS(false, s(s(s(s(s(X'''''))))), s(s(s(s(s(Y''''')))))) -> MINUS(s(s(s(s(X''''')))), s(s(s(s(s(Y'''''))))))
one new Dependency Pair is created:

IFMINUS(false, s(s(s(s(s(s(X'''')))))), s(s(s(s(s(Y'''''')))))) -> MINUS(s(s(s(s(s(X''''))))), s(s(s(s(s(Y''''''))))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
       →DP Problem 3
Remaining Obligation(s)




The following remains to be proven:


   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 7
Nar
             ...
               →DP Problem 22
Forward Instantiation Transformation
       →DP Problem 3
Remaining


Dependency Pairs:

IFMINUS(false, s(s(s(s(s(X'''''))))), s(s(s(s(0))))) -> MINUS(s(s(s(s(X''''')))), s(s(s(s(0)))))
MINUS(s(s(s(s(s(X''))))), s(s(s(s(0))))) -> IFMINUS(false, s(s(s(s(s(X''))))), s(s(s(s(0)))))


Rules:


le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

IFMINUS(false, s(s(s(s(s(X'''''))))), s(s(s(s(0))))) -> MINUS(s(s(s(s(X''''')))), s(s(s(s(0)))))
one new Dependency Pair is created:

IFMINUS(false, s(s(s(s(s(s(X'''')))))), s(s(s(s(0))))) -> MINUS(s(s(s(s(s(X''''))))), s(s(s(s(0)))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 7
Nar
             ...
               →DP Problem 26
Argument Filtering and Ordering
       →DP Problem 3
Remaining


Dependency Pairs:

IFMINUS(false, s(s(s(s(s(s(X'''')))))), s(s(s(s(0))))) -> MINUS(s(s(s(s(s(X''''))))), s(s(s(s(0)))))
MINUS(s(s(s(s(s(X''))))), s(s(s(s(0))))) -> IFMINUS(false, s(s(s(s(s(X''))))), s(s(s(s(0)))))


Rules:


le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))


Strategy:

innermost




The following dependency pair can be strictly oriented:

IFMINUS(false, s(s(s(s(s(s(X'''')))))), s(s(s(s(0))))) -> MINUS(s(s(s(s(s(X''''))))), s(s(s(s(0)))))


There are no usable rules for innermost that need to be oriented.
Used ordering: Homeomorphic Embedding Order with EMB
resulting in one new DP problem.
Used Argument Filtering System:
IFMINUS(x1, x2, x3) -> x2
s(x1) -> s(x1)
MINUS(x1, x2) -> x1


   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 7
Nar
             ...
               →DP Problem 34
Dependency Graph
       →DP Problem 3
Remaining


Dependency Pair:

MINUS(s(s(s(s(s(X''))))), s(s(s(s(0))))) -> IFMINUS(false, s(s(s(s(s(X''))))), s(s(s(s(0)))))


Rules:


le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 7
Nar
             ...
               →DP Problem 23
Forward Instantiation Transformation
       →DP Problem 3
Remaining


Dependency Pairs:

IFMINUS(false, s(s(s(X'''''))), s(s(0))) -> MINUS(s(s(X''''')), s(s(0)))
MINUS(s(s(s(X''))), s(s(0))) -> IFMINUS(false, s(s(s(X''))), s(s(0)))


Rules:


le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

IFMINUS(false, s(s(s(X'''''))), s(s(0))) -> MINUS(s(s(X''''')), s(s(0)))
one new Dependency Pair is created:

IFMINUS(false, s(s(s(s(X'''')))), s(s(0))) -> MINUS(s(s(s(X''''))), s(s(0)))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 7
Nar
             ...
               →DP Problem 27
Forward Instantiation Transformation
       →DP Problem 3
Remaining


Dependency Pairs:

IFMINUS(false, s(s(s(s(X'''')))), s(s(0))) -> MINUS(s(s(s(X''''))), s(s(0)))
MINUS(s(s(s(X''))), s(s(0))) -> IFMINUS(false, s(s(s(X''))), s(s(0)))


Rules:


le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

MINUS(s(s(s(X''))), s(s(0))) -> IFMINUS(false, s(s(s(X''))), s(s(0)))
one new Dependency Pair is created:

MINUS(s(s(s(s(X'''''')))), s(s(0))) -> IFMINUS(false, s(s(s(s(X'''''')))), s(s(0)))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 7
Nar
             ...
               →DP Problem 29
Forward Instantiation Transformation
       →DP Problem 3
Remaining


Dependency Pairs:

MINUS(s(s(s(s(X'''''')))), s(s(0))) -> IFMINUS(false, s(s(s(s(X'''''')))), s(s(0)))
IFMINUS(false, s(s(s(s(X'''')))), s(s(0))) -> MINUS(s(s(s(X''''))), s(s(0)))


Rules:


le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

IFMINUS(false, s(s(s(s(X'''')))), s(s(0))) -> MINUS(s(s(s(X''''))), s(s(0)))
one new Dependency Pair is created:

IFMINUS(false, s(s(s(s(s(X''''''''))))), s(s(0))) -> MINUS(s(s(s(s(X'''''''')))), s(s(0)))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 7
Nar
             ...
               →DP Problem 31
Forward Instantiation Transformation
       →DP Problem 3
Remaining


Dependency Pairs:

IFMINUS(false, s(s(s(s(s(X''''''''))))), s(s(0))) -> MINUS(s(s(s(s(X'''''''')))), s(s(0)))
MINUS(s(s(s(s(X'''''')))), s(s(0))) -> IFMINUS(false, s(s(s(s(X'''''')))), s(s(0)))


Rules:


le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

MINUS(s(s(s(s(X'''''')))), s(s(0))) -> IFMINUS(false, s(s(s(s(X'''''')))), s(s(0)))
one new Dependency Pair is created:

MINUS(s(s(s(s(s(X''''''''''))))), s(s(0))) -> IFMINUS(false, s(s(s(s(s(X''''''''''))))), s(s(0)))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 7
Nar
             ...
               →DP Problem 33
Argument Filtering and Ordering
       →DP Problem 3
Remaining


Dependency Pairs:

MINUS(s(s(s(s(s(X''''''''''))))), s(s(0))) -> IFMINUS(false, s(s(s(s(s(X''''''''''))))), s(s(0)))
IFMINUS(false, s(s(s(s(s(X''''''''))))), s(s(0))) -> MINUS(s(s(s(s(X'''''''')))), s(s(0)))


Rules:


le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))


Strategy:

innermost




The following dependency pair can be strictly oriented:

IFMINUS(false, s(s(s(s(s(X''''''''))))), s(s(0))) -> MINUS(s(s(s(s(X'''''''')))), s(s(0)))


There are no usable rules for innermost that need to be oriented.
Used ordering: Homeomorphic Embedding Order with EMB
resulting in one new DP problem.
Used Argument Filtering System:
IFMINUS(x1, x2, x3) -> x2
s(x1) -> s(x1)
MINUS(x1, x2) -> x1


   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 7
Nar
             ...
               →DP Problem 36
Dependency Graph
       →DP Problem 3
Remaining


Dependency Pair:

MINUS(s(s(s(s(s(X''''''''''))))), s(s(0))) -> IFMINUS(false, s(s(s(s(s(X''''''''''))))), s(s(0)))


Rules:


le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 7
Nar
             ...
               →DP Problem 24
Forward Instantiation Transformation
       →DP Problem 3
Remaining


Dependency Pairs:

IFMINUS(false, s(s(s(s(X''')))), s(s(s(0)))) -> MINUS(s(s(s(X'''))), s(s(s(0))))
MINUS(s(s(s(s(X')))), s(s(s(0)))) -> IFMINUS(false, s(s(s(s(X')))), s(s(s(0))))


Rules:


le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

IFMINUS(false, s(s(s(s(X''')))), s(s(s(0)))) -> MINUS(s(s(s(X'''))), s(s(s(0))))
one new Dependency Pair is created:

IFMINUS(false, s(s(s(s(s(X''''))))), s(s(s(0)))) -> MINUS(s(s(s(s(X'''')))), s(s(s(0))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 7
Nar
             ...
               →DP Problem 28
Forward Instantiation Transformation
       →DP Problem 3
Remaining


Dependency Pairs:

IFMINUS(false, s(s(s(s(s(X''''))))), s(s(s(0)))) -> MINUS(s(s(s(s(X'''')))), s(s(s(0))))
MINUS(s(s(s(s(X')))), s(s(s(0)))) -> IFMINUS(false, s(s(s(s(X')))), s(s(s(0))))


Rules:


le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

MINUS(s(s(s(s(X')))), s(s(s(0)))) -> IFMINUS(false, s(s(s(s(X')))), s(s(s(0))))
one new Dependency Pair is created:

MINUS(s(s(s(s(s(X''''''))))), s(s(s(0)))) -> IFMINUS(false, s(s(s(s(s(X''''''))))), s(s(s(0))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 7
Nar
             ...
               →DP Problem 30
Forward Instantiation Transformation
       →DP Problem 3
Remaining


Dependency Pairs:

MINUS(s(s(s(s(s(X''''''))))), s(s(s(0)))) -> IFMINUS(false, s(s(s(s(s(X''''''))))), s(s(s(0))))
IFMINUS(false, s(s(s(s(s(X''''))))), s(s(s(0)))) -> MINUS(s(s(s(s(X'''')))), s(s(s(0))))


Rules:


le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

IFMINUS(false, s(s(s(s(s(X''''))))), s(s(s(0)))) -> MINUS(s(s(s(s(X'''')))), s(s(s(0))))
one new Dependency Pair is created:

IFMINUS(false, s(s(s(s(s(s(X'''''''')))))), s(s(s(0)))) -> MINUS(s(s(s(s(s(X''''''''))))), s(s(s(0))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 7
Nar
             ...
               →DP Problem 32
Argument Filtering and Ordering
       →DP Problem 3
Remaining


Dependency Pairs:

IFMINUS(false, s(s(s(s(s(s(X'''''''')))))), s(s(s(0)))) -> MINUS(s(s(s(s(s(X''''''''))))), s(s(s(0))))
MINUS(s(s(s(s(s(X''''''))))), s(s(s(0)))) -> IFMINUS(false, s(s(s(s(s(X''''''))))), s(s(s(0))))


Rules:


le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))


Strategy:

innermost




The following dependency pair can be strictly oriented:

IFMINUS(false, s(s(s(s(s(s(X'''''''')))))), s(s(s(0)))) -> MINUS(s(s(s(s(s(X''''''''))))), s(s(s(0))))


There are no usable rules for innermost that need to be oriented.
Used ordering: Homeomorphic Embedding Order with EMB
resulting in one new DP problem.
Used Argument Filtering System:
MINUS(x1, x2) -> x1
s(x1) -> s(x1)
IFMINUS(x1, x2, x3) -> x2


   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 7
Nar
             ...
               →DP Problem 35
Dependency Graph
       →DP Problem 3
Remaining


Dependency Pair:

MINUS(s(s(s(s(s(X''''''))))), s(s(s(0)))) -> IFMINUS(false, s(s(s(s(s(X''''''))))), s(s(s(0))))


Rules:


le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 7
Nar
             ...
               →DP Problem 10
Forward Instantiation Transformation
       →DP Problem 3
Remaining


Dependency Pairs:

IFMINUS(false, s(s(X''')), s(0)) -> MINUS(s(X'''), s(0))
MINUS(s(s(X')), s(0)) -> IFMINUS(false, s(s(X')), s(0))


Rules:


le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

IFMINUS(false, s(s(X''')), s(0)) -> MINUS(s(X'''), s(0))
one new Dependency Pair is created:

IFMINUS(false, s(s(s(X''''))), s(0)) -> MINUS(s(s(X'''')), s(0))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 7
Nar
             ...
               →DP Problem 13
Argument Filtering and Ordering
       →DP Problem 3
Remaining


Dependency Pairs:

IFMINUS(false, s(s(s(X''''))), s(0)) -> MINUS(s(s(X'''')), s(0))
MINUS(s(s(X')), s(0)) -> IFMINUS(false, s(s(X')), s(0))


Rules:


le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))


Strategy:

innermost




The following dependency pair can be strictly oriented:

IFMINUS(false, s(s(s(X''''))), s(0)) -> MINUS(s(s(X'''')), s(0))


There are no usable rules for innermost that need to be oriented.
Used ordering: Homeomorphic Embedding Order with EMB
resulting in one new DP problem.
Used Argument Filtering System:
MINUS(x1, x2) -> x1
s(x1) -> s(x1)
IFMINUS(x1, x2, x3) -> x2


   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 7
Nar
             ...
               →DP Problem 16
Dependency Graph
       →DP Problem 3
Remaining


Dependency Pair:

MINUS(s(s(X')), s(0)) -> IFMINUS(false, s(s(X')), s(0))


Rules:


le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 7
Nar
             ...
               →DP Problem 11
Forward Instantiation Transformation
       →DP Problem 3
Remaining


Dependency Pairs:

IFMINUS(false, s(X'), 0) -> MINUS(X', 0)
MINUS(s(X''), 0) -> IFMINUS(false, s(X''), 0)


Rules:


le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

IFMINUS(false, s(X'), 0) -> MINUS(X', 0)
one new Dependency Pair is created:

IFMINUS(false, s(s(X'''')), 0) -> MINUS(s(X''''), 0)

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 7
Nar
             ...
               →DP Problem 14
Forward Instantiation Transformation
       →DP Problem 3
Remaining


Dependency Pairs:

IFMINUS(false, s(s(X'''')), 0) -> MINUS(s(X''''), 0)
MINUS(s(X''), 0) -> IFMINUS(false, s(X''), 0)


Rules:


le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

MINUS(s(X''), 0) -> IFMINUS(false, s(X''), 0)
one new Dependency Pair is created:

MINUS(s(s(X'''''')), 0) -> IFMINUS(false, s(s(X'''''')), 0)

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 7
Nar
             ...
               →DP Problem 15
Argument Filtering and Ordering
       →DP Problem 3
Remaining


Dependency Pairs:

MINUS(s(s(X'''''')), 0) -> IFMINUS(false, s(s(X'''''')), 0)
IFMINUS(false, s(s(X'''')), 0) -> MINUS(s(X''''), 0)


Rules:


le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))


Strategy:

innermost




The following dependency pair can be strictly oriented:

IFMINUS(false, s(s(X'''')), 0) -> MINUS(s(X''''), 0)


There are no usable rules for innermost that need to be oriented.
Used ordering: Homeomorphic Embedding Order with EMB
resulting in one new DP problem.
Used Argument Filtering System:
IFMINUS(x1, x2, x3) -> x2
s(x1) -> s(x1)
MINUS(x1, x2) -> x1


   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 7
Nar
             ...
               →DP Problem 17
Dependency Graph
       →DP Problem 3
Remaining


Dependency Pair:

MINUS(s(s(X'''''')), 0) -> IFMINUS(false, s(s(X'''''')), 0)


Rules:


le(0, Y) -> true
le(s(X), 0) -> false
le(s(X), s(Y)) -> le(X, Y)
minus(0, Y) -> 0
minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) -> 0
ifMinus(false, s(X), Y) -> s(minus(X, Y))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
       →DP Problem 3
Remaining Obligation(s)




The following remains to be proven:

Innermost Termination of R could not be shown.
Duration:
0:01 minutes