Term Rewriting System R:
[X, Y, Z, X1, X2, X3, X4]
plus(s(X), plus(Y, Z)) -> plus(X, plus(s(s(Y)), Z))
plus(s(X1), plus(X2, plus(X3, X4))) -> plus(X1, plus(X3, plus(X2, X4)))

Innermost Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

PLUS(s(X), plus(Y, Z)) -> PLUS(X, plus(s(s(Y)), Z))
PLUS(s(X), plus(Y, Z)) -> PLUS(s(s(Y)), Z)
PLUS(s(X1), plus(X2, plus(X3, X4))) -> PLUS(X1, plus(X3, plus(X2, X4)))
PLUS(s(X1), plus(X2, plus(X3, X4))) -> PLUS(X3, plus(X2, X4))
PLUS(s(X1), plus(X2, plus(X3, X4))) -> PLUS(X2, X4)

Furthermore, R contains one SCC.


   R
DPs
       →DP Problem 1
Polynomial Ordering


Dependency Pairs:

PLUS(s(X1), plus(X2, plus(X3, X4))) -> PLUS(X3, plus(X2, X4))
PLUS(s(X1), plus(X2, plus(X3, X4))) -> PLUS(X1, plus(X3, plus(X2, X4)))
PLUS(s(X), plus(Y, Z)) -> PLUS(s(s(Y)), Z)
PLUS(s(X), plus(Y, Z)) -> PLUS(X, plus(s(s(Y)), Z))


Rules:


plus(s(X), plus(Y, Z)) -> plus(X, plus(s(s(Y)), Z))
plus(s(X1), plus(X2, plus(X3, X4))) -> plus(X1, plus(X3, plus(X2, X4)))


Strategy:

innermost




The following dependency pairs can be strictly oriented:

PLUS(s(X1), plus(X2, plus(X3, X4))) -> PLUS(X3, plus(X2, X4))
PLUS(s(X), plus(Y, Z)) -> PLUS(s(s(Y)), Z)


Additionally, the following usable rules for innermost can be oriented:

plus(s(X), plus(Y, Z)) -> plus(X, plus(s(s(Y)), Z))
plus(s(X1), plus(X2, plus(X3, X4))) -> plus(X1, plus(X3, plus(X2, X4)))


Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(plus(x1, x2))=  1 + x2  
  POL(PLUS(x1, x2))=  x2  
  POL(s(x1))=  0  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
           →DP Problem 2
Polynomial Ordering


Dependency Pairs:

PLUS(s(X1), plus(X2, plus(X3, X4))) -> PLUS(X1, plus(X3, plus(X2, X4)))
PLUS(s(X), plus(Y, Z)) -> PLUS(X, plus(s(s(Y)), Z))


Rules:


plus(s(X), plus(Y, Z)) -> plus(X, plus(s(s(Y)), Z))
plus(s(X1), plus(X2, plus(X3, X4))) -> plus(X1, plus(X3, plus(X2, X4)))


Strategy:

innermost




The following dependency pairs can be strictly oriented:

PLUS(s(X1), plus(X2, plus(X3, X4))) -> PLUS(X1, plus(X3, plus(X2, X4)))
PLUS(s(X), plus(Y, Z)) -> PLUS(X, plus(s(s(Y)), Z))


Additionally, the following usable rules for innermost can be oriented:

plus(s(X), plus(Y, Z)) -> plus(X, plus(s(s(Y)), Z))
plus(s(X1), plus(X2, plus(X3, X4))) -> plus(X1, plus(X3, plus(X2, X4)))


Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(plus(x1, x2))=  0  
  POL(PLUS(x1, x2))=  x1  
  POL(s(x1))=  1 + x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
           →DP Problem 2
Polo
             ...
               →DP Problem 3
Dependency Graph


Dependency Pair:


Rules:


plus(s(X), plus(Y, Z)) -> plus(X, plus(s(s(Y)), Z))
plus(s(X1), plus(X2, plus(X3, X4))) -> plus(X1, plus(X3, plus(X2, X4)))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.

Innermost Termination of R successfully shown.
Duration:
0:00 minutes