R
↳Dependency Pair Analysis
PLUS(s(X), plus(Y, Z)) -> PLUS(X, plus(s(s(Y)), Z))
PLUS(s(X), plus(Y, Z)) -> PLUS(s(s(Y)), Z)
PLUS(s(X1), plus(X2, plus(X3, X4))) -> PLUS(X1, plus(X3, plus(X2, X4)))
PLUS(s(X1), plus(X2, plus(X3, X4))) -> PLUS(X3, plus(X2, X4))
PLUS(s(X1), plus(X2, plus(X3, X4))) -> PLUS(X2, X4)
R
↳DPs
→DP Problem 1
↳Forward Instantiation Transformation
PLUS(s(X1), plus(X2, plus(X3, X4))) -> PLUS(X3, plus(X2, X4))
PLUS(s(X1), plus(X2, plus(X3, X4))) -> PLUS(X1, plus(X3, plus(X2, X4)))
PLUS(s(X), plus(Y, Z)) -> PLUS(s(s(Y)), Z)
PLUS(s(X), plus(Y, Z)) -> PLUS(X, plus(s(s(Y)), Z))
plus(s(X), plus(Y, Z)) -> plus(X, plus(s(s(Y)), Z))
plus(s(X1), plus(X2, plus(X3, X4))) -> plus(X1, plus(X3, plus(X2, X4)))
innermost
two new Dependency Pairs are created:
PLUS(s(X), plus(Y, Z)) -> PLUS(X, plus(s(s(Y)), Z))
PLUS(s(s(X'')), plus(Y', Z')) -> PLUS(s(X''), plus(s(s(Y')), Z'))
PLUS(s(s(X1'')), plus(Y', Z')) -> PLUS(s(X1''), plus(s(s(Y')), Z'))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Forward Instantiation Transformation
PLUS(s(s(X1'')), plus(Y', Z')) -> PLUS(s(X1''), plus(s(s(Y')), Z'))
PLUS(s(s(X'')), plus(Y', Z')) -> PLUS(s(X''), plus(s(s(Y')), Z'))
PLUS(s(X1), plus(X2, plus(X3, X4))) -> PLUS(X1, plus(X3, plus(X2, X4)))
PLUS(s(X), plus(Y, Z)) -> PLUS(s(s(Y)), Z)
PLUS(s(X1), plus(X2, plus(X3, X4))) -> PLUS(X3, plus(X2, X4))
plus(s(X), plus(Y, Z)) -> plus(X, plus(s(s(Y)), Z))
plus(s(X1), plus(X2, plus(X3, X4))) -> plus(X1, plus(X3, plus(X2, X4)))
innermost
three new Dependency Pairs are created:
PLUS(s(X), plus(Y, Z)) -> PLUS(s(s(Y)), Z)
PLUS(s(X), plus(Y0, plus(Y'', Z''))) -> PLUS(s(s(Y0)), plus(Y'', Z''))
PLUS(s(X), plus(Y', plus(X2'', plus(X3'', X4'')))) -> PLUS(s(s(Y')), plus(X2'', plus(X3'', X4'')))
PLUS(s(X), plus(Y', plus(Y''', Z'''))) -> PLUS(s(s(Y')), plus(Y''', Z'''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 3
↳Forward Instantiation Transformation
PLUS(s(X), plus(Y', plus(Y''', Z'''))) -> PLUS(s(s(Y')), plus(Y''', Z'''))
PLUS(s(X), plus(Y', plus(X2'', plus(X3'', X4'')))) -> PLUS(s(s(Y')), plus(X2'', plus(X3'', X4'')))
PLUS(s(X), plus(Y0, plus(Y'', Z''))) -> PLUS(s(s(Y0)), plus(Y'', Z''))
PLUS(s(s(X'')), plus(Y', Z')) -> PLUS(s(X''), plus(s(s(Y')), Z'))
PLUS(s(X1), plus(X2, plus(X3, X4))) -> PLUS(X3, plus(X2, X4))
PLUS(s(X1), plus(X2, plus(X3, X4))) -> PLUS(X1, plus(X3, plus(X2, X4)))
PLUS(s(s(X1'')), plus(Y', Z')) -> PLUS(s(X1''), plus(s(s(Y')), Z'))
plus(s(X), plus(Y, Z)) -> plus(X, plus(s(s(Y)), Z))
plus(s(X1), plus(X2, plus(X3, X4))) -> plus(X1, plus(X3, plus(X2, X4)))
innermost
four new Dependency Pairs are created:
PLUS(s(X1), plus(X2, plus(X3, X4))) -> PLUS(X1, plus(X3, plus(X2, X4)))
PLUS(s(s(X1'')), plus(X2', plus(X3', X4'))) -> PLUS(s(X1''), plus(X3', plus(X2', X4')))
PLUS(s(s(s(X''''))), plus(X2', plus(X3', X4'))) -> PLUS(s(s(X'''')), plus(X3', plus(X2', X4')))
PLUS(s(s(s(X1''''))), plus(X2', plus(X3', X4'))) -> PLUS(s(s(X1'''')), plus(X3', plus(X2', X4')))
PLUS(s(s(X'')), plus(X2', plus(X3', X4'))) -> PLUS(s(X''), plus(X3', plus(X2', X4')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 4
↳Forward Instantiation Transformation
PLUS(s(s(X'')), plus(X2', plus(X3', X4'))) -> PLUS(s(X''), plus(X3', plus(X2', X4')))
PLUS(s(s(s(X1''''))), plus(X2', plus(X3', X4'))) -> PLUS(s(s(X1'''')), plus(X3', plus(X2', X4')))
PLUS(s(s(s(X''''))), plus(X2', plus(X3', X4'))) -> PLUS(s(s(X'''')), plus(X3', plus(X2', X4')))
PLUS(s(s(X1'')), plus(X2', plus(X3', X4'))) -> PLUS(s(X1''), plus(X3', plus(X2', X4')))
PLUS(s(X), plus(Y', plus(X2'', plus(X3'', X4'')))) -> PLUS(s(s(Y')), plus(X2'', plus(X3'', X4'')))
PLUS(s(X), plus(Y0, plus(Y'', Z''))) -> PLUS(s(s(Y0)), plus(Y'', Z''))
PLUS(s(s(X1'')), plus(Y', Z')) -> PLUS(s(X1''), plus(s(s(Y')), Z'))
PLUS(s(s(X'')), plus(Y', Z')) -> PLUS(s(X''), plus(s(s(Y')), Z'))
PLUS(s(X1), plus(X2, plus(X3, X4))) -> PLUS(X3, plus(X2, X4))
PLUS(s(X), plus(Y', plus(Y''', Z'''))) -> PLUS(s(s(Y')), plus(Y''', Z'''))
plus(s(X), plus(Y, Z)) -> plus(X, plus(s(s(Y)), Z))
plus(s(X1), plus(X2, plus(X3, X4))) -> plus(X1, plus(X3, plus(X2, X4)))
innermost
six new Dependency Pairs are created:
PLUS(s(X1), plus(X2, plus(X3, X4))) -> PLUS(X3, plus(X2, X4))
PLUS(s(X1), plus(X2', plus(s(X1''), X4'))) -> PLUS(s(X1''), plus(X2', X4'))
PLUS(s(X1), plus(X2', plus(s(s(X'''')), X4'))) -> PLUS(s(s(X'''')), plus(X2', X4'))
PLUS(s(X1), plus(X2', plus(s(s(X1'''')), X4'))) -> PLUS(s(s(X1'''')), plus(X2', X4'))
PLUS(s(X1), plus(X2', plus(s(X''), X4'))) -> PLUS(s(X''), plus(X2', X4'))
PLUS(s(X1), plus(X2', plus(s(s(s(X''''''))), X4'))) -> PLUS(s(s(s(X''''''))), plus(X2', X4'))
PLUS(s(X1), plus(X2', plus(s(s(s(X1''''''))), X4'))) -> PLUS(s(s(s(X1''''''))), plus(X2', X4'))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 5
↳Polynomial Ordering
PLUS(s(X1), plus(X2', plus(s(s(s(X1''''''))), X4'))) -> PLUS(s(s(s(X1''''''))), plus(X2', X4'))
PLUS(s(X1), plus(X2', plus(s(s(s(X''''''))), X4'))) -> PLUS(s(s(s(X''''''))), plus(X2', X4'))
PLUS(s(X1), plus(X2', plus(s(X''), X4'))) -> PLUS(s(X''), plus(X2', X4'))
PLUS(s(X1), plus(X2', plus(s(s(X1'''')), X4'))) -> PLUS(s(s(X1'''')), plus(X2', X4'))
PLUS(s(X1), plus(X2', plus(s(s(X'''')), X4'))) -> PLUS(s(s(X'''')), plus(X2', X4'))
PLUS(s(X1), plus(X2', plus(s(X1''), X4'))) -> PLUS(s(X1''), plus(X2', X4'))
PLUS(s(s(s(X1''''))), plus(X2', plus(X3', X4'))) -> PLUS(s(s(X1'''')), plus(X3', plus(X2', X4')))
PLUS(s(s(s(X''''))), plus(X2', plus(X3', X4'))) -> PLUS(s(s(X'''')), plus(X3', plus(X2', X4')))
PLUS(s(s(X1'')), plus(X2', plus(X3', X4'))) -> PLUS(s(X1''), plus(X3', plus(X2', X4')))
PLUS(s(X), plus(Y', plus(Y''', Z'''))) -> PLUS(s(s(Y')), plus(Y''', Z'''))
PLUS(s(X), plus(Y', plus(X2'', plus(X3'', X4'')))) -> PLUS(s(s(Y')), plus(X2'', plus(X3'', X4'')))
PLUS(s(X), plus(Y0, plus(Y'', Z''))) -> PLUS(s(s(Y0)), plus(Y'', Z''))
PLUS(s(s(X1'')), plus(Y', Z')) -> PLUS(s(X1''), plus(s(s(Y')), Z'))
PLUS(s(s(X'')), plus(Y', Z')) -> PLUS(s(X''), plus(s(s(Y')), Z'))
PLUS(s(s(X'')), plus(X2', plus(X3', X4'))) -> PLUS(s(X''), plus(X3', plus(X2', X4')))
plus(s(X), plus(Y, Z)) -> plus(X, plus(s(s(Y)), Z))
plus(s(X1), plus(X2, plus(X3, X4))) -> plus(X1, plus(X3, plus(X2, X4)))
innermost
PLUS(s(X1), plus(X2', plus(s(s(s(X1''''''))), X4'))) -> PLUS(s(s(s(X1''''''))), plus(X2', X4'))
PLUS(s(X1), plus(X2', plus(s(s(s(X''''''))), X4'))) -> PLUS(s(s(s(X''''''))), plus(X2', X4'))
PLUS(s(X1), plus(X2', plus(s(X''), X4'))) -> PLUS(s(X''), plus(X2', X4'))
PLUS(s(X1), plus(X2', plus(s(s(X1'''')), X4'))) -> PLUS(s(s(X1'''')), plus(X2', X4'))
PLUS(s(X1), plus(X2', plus(s(s(X'''')), X4'))) -> PLUS(s(s(X'''')), plus(X2', X4'))
PLUS(s(X1), plus(X2', plus(s(X1''), X4'))) -> PLUS(s(X1''), plus(X2', X4'))
PLUS(s(X), plus(Y', plus(Y''', Z'''))) -> PLUS(s(s(Y')), plus(Y''', Z'''))
PLUS(s(X), plus(Y', plus(X2'', plus(X3'', X4'')))) -> PLUS(s(s(Y')), plus(X2'', plus(X3'', X4'')))
PLUS(s(X), plus(Y0, plus(Y'', Z''))) -> PLUS(s(s(Y0)), plus(Y'', Z''))
plus(s(X), plus(Y, Z)) -> plus(X, plus(s(s(Y)), Z))
plus(s(X1), plus(X2, plus(X3, X4))) -> plus(X1, plus(X3, plus(X2, X4)))
POL(plus(x1, x2)) = 1 + x2 POL(PLUS(x1, x2)) = 1 + x2 POL(s(x1)) = 0
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 6
↳Forward Instantiation Transformation
PLUS(s(s(s(X1''''))), plus(X2', plus(X3', X4'))) -> PLUS(s(s(X1'''')), plus(X3', plus(X2', X4')))
PLUS(s(s(s(X''''))), plus(X2', plus(X3', X4'))) -> PLUS(s(s(X'''')), plus(X3', plus(X2', X4')))
PLUS(s(s(X1'')), plus(X2', plus(X3', X4'))) -> PLUS(s(X1''), plus(X3', plus(X2', X4')))
PLUS(s(s(X1'')), plus(Y', Z')) -> PLUS(s(X1''), plus(s(s(Y')), Z'))
PLUS(s(s(X'')), plus(Y', Z')) -> PLUS(s(X''), plus(s(s(Y')), Z'))
PLUS(s(s(X'')), plus(X2', plus(X3', X4'))) -> PLUS(s(X''), plus(X3', plus(X2', X4')))
plus(s(X), plus(Y, Z)) -> plus(X, plus(s(s(Y)), Z))
plus(s(X1), plus(X2, plus(X3, X4))) -> plus(X1, plus(X3, plus(X2, X4)))
innermost
four new Dependency Pairs are created:
PLUS(s(s(X'')), plus(Y', Z')) -> PLUS(s(X''), plus(s(s(Y')), Z'))
PLUS(s(s(s(X''''))), plus(Y'', Z'')) -> PLUS(s(s(X'''')), plus(s(s(Y'')), Z''))
PLUS(s(s(s(X1''''))), plus(Y'', Z'')) -> PLUS(s(s(X1'''')), plus(s(s(Y'')), Z''))
PLUS(s(s(s(s(X'''''')))), plus(Y'', Z'')) -> PLUS(s(s(s(X''''''))), plus(s(s(Y'')), Z''))
PLUS(s(s(s(s(X1'''''')))), plus(Y'', Z'')) -> PLUS(s(s(s(X1''''''))), plus(s(s(Y'')), Z''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 7
↳Forward Instantiation Transformation
PLUS(s(s(s(s(X1'''''')))), plus(Y'', Z'')) -> PLUS(s(s(s(X1''''''))), plus(s(s(Y'')), Z''))
PLUS(s(s(s(s(X'''''')))), plus(Y'', Z'')) -> PLUS(s(s(s(X''''''))), plus(s(s(Y'')), Z''))
PLUS(s(s(s(X1''''))), plus(Y'', Z'')) -> PLUS(s(s(X1'''')), plus(s(s(Y'')), Z''))
PLUS(s(s(s(X''''))), plus(Y'', Z'')) -> PLUS(s(s(X'''')), plus(s(s(Y'')), Z''))
PLUS(s(s(X'')), plus(X2', plus(X3', X4'))) -> PLUS(s(X''), plus(X3', plus(X2', X4')))
PLUS(s(s(s(X''''))), plus(X2', plus(X3', X4'))) -> PLUS(s(s(X'''')), plus(X3', plus(X2', X4')))
PLUS(s(s(X1'')), plus(X2', plus(X3', X4'))) -> PLUS(s(X1''), plus(X3', plus(X2', X4')))
PLUS(s(s(X1'')), plus(Y', Z')) -> PLUS(s(X1''), plus(s(s(Y')), Z'))
PLUS(s(s(s(X1''''))), plus(X2', plus(X3', X4'))) -> PLUS(s(s(X1'''')), plus(X3', plus(X2', X4')))
plus(s(X), plus(Y, Z)) -> plus(X, plus(s(s(Y)), Z))
plus(s(X1), plus(X2, plus(X3, X4))) -> plus(X1, plus(X3, plus(X2, X4)))
innermost
six new Dependency Pairs are created:
PLUS(s(s(X1'')), plus(Y', Z')) -> PLUS(s(X1''), plus(s(s(Y')), Z'))
PLUS(s(s(s(X1''''))), plus(Y'', Z'')) -> PLUS(s(s(X1'''')), plus(s(s(Y'')), Z''))
PLUS(s(s(s(s(X'''''')))), plus(Y'', Z'')) -> PLUS(s(s(s(X''''''))), plus(s(s(Y'')), Z''))
PLUS(s(s(s(s(X1'''''')))), plus(Y'', Z'')) -> PLUS(s(s(s(X1''''''))), plus(s(s(Y'')), Z''))
PLUS(s(s(s(X''''))), plus(Y'', Z'')) -> PLUS(s(s(X'''')), plus(s(s(Y'')), Z''))
PLUS(s(s(s(s(s(X''''''''))))), plus(Y'', Z'')) -> PLUS(s(s(s(s(X'''''''')))), plus(s(s(Y'')), Z''))
PLUS(s(s(s(s(s(X1''''''''))))), plus(Y'', Z'')) -> PLUS(s(s(s(s(X1'''''''')))), plus(s(s(Y'')), Z''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 8
↳Forward Instantiation Transformation
PLUS(s(s(s(s(s(X1''''''''))))), plus(Y'', Z'')) -> PLUS(s(s(s(s(X1'''''''')))), plus(s(s(Y'')), Z''))
PLUS(s(s(s(s(s(X''''''''))))), plus(Y'', Z'')) -> PLUS(s(s(s(s(X'''''''')))), plus(s(s(Y'')), Z''))
PLUS(s(s(s(X''''))), plus(Y'', Z'')) -> PLUS(s(s(X'''')), plus(s(s(Y'')), Z''))
PLUS(s(s(s(s(X1'''''')))), plus(Y'', Z'')) -> PLUS(s(s(s(X1''''''))), plus(s(s(Y'')), Z''))
PLUS(s(s(s(s(X'''''')))), plus(Y'', Z'')) -> PLUS(s(s(s(X''''''))), plus(s(s(Y'')), Z''))
PLUS(s(s(s(X1''''))), plus(Y'', Z'')) -> PLUS(s(s(X1'''')), plus(s(s(Y'')), Z''))
PLUS(s(s(s(s(X'''''')))), plus(Y'', Z'')) -> PLUS(s(s(s(X''''''))), plus(s(s(Y'')), Z''))
PLUS(s(s(s(X1''''))), plus(Y'', Z'')) -> PLUS(s(s(X1'''')), plus(s(s(Y'')), Z''))
PLUS(s(s(s(X''''))), plus(Y'', Z'')) -> PLUS(s(s(X'''')), plus(s(s(Y'')), Z''))
PLUS(s(s(X'')), plus(X2', plus(X3', X4'))) -> PLUS(s(X''), plus(X3', plus(X2', X4')))
PLUS(s(s(s(X1''''))), plus(X2', plus(X3', X4'))) -> PLUS(s(s(X1'''')), plus(X3', plus(X2', X4')))
PLUS(s(s(s(X''''))), plus(X2', plus(X3', X4'))) -> PLUS(s(s(X'''')), plus(X3', plus(X2', X4')))
PLUS(s(s(X1'')), plus(X2', plus(X3', X4'))) -> PLUS(s(X1''), plus(X3', plus(X2', X4')))
PLUS(s(s(s(s(X1'''''')))), plus(Y'', Z'')) -> PLUS(s(s(s(X1''''''))), plus(s(s(Y'')), Z''))
plus(s(X), plus(Y, Z)) -> plus(X, plus(s(s(Y)), Z))
plus(s(X1), plus(X2, plus(X3, X4))) -> plus(X1, plus(X3, plus(X2, X4)))
innermost
eight new Dependency Pairs are created:
PLUS(s(s(X1'')), plus(X2', plus(X3', X4'))) -> PLUS(s(X1''), plus(X3', plus(X2', X4')))
PLUS(s(s(s(X1''''))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(X1'''')), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(s(X'''''')))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(X''''''))), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(s(X1'''''')))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(X1''''''))), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(X''''))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(X'''')), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(s(s(X''''''''))))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(s(X'''''''')))), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(s(s(X1''''''''))))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(s(X1'''''''')))), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(s(s(s(X'''''''''')))))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(s(s(X''''''''''))))), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(s(s(s(X1'''''''''')))))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(s(s(X1''''''''''))))), plus(X3'', plus(X2'', X4'')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 9
↳Forward Instantiation Transformation
PLUS(s(s(s(s(s(s(X1'''''''''')))))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(s(s(X1''''''''''))))), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(s(s(s(X'''''''''')))))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(s(s(X''''''''''))))), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(s(s(X1''''''''))))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(s(X1'''''''')))), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(s(s(X''''''''))))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(s(X'''''''')))), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(X''''))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(X'''')), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(s(X1'''''')))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(X1''''''))), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(s(X'''''')))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(X''''''))), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(X1''''))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(X1'''')), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(s(s(X''''''''))))), plus(Y'', Z'')) -> PLUS(s(s(s(s(X'''''''')))), plus(s(s(Y'')), Z''))
PLUS(s(s(s(X''''))), plus(Y'', Z'')) -> PLUS(s(s(X'''')), plus(s(s(Y'')), Z''))
PLUS(s(s(s(s(X1'''''')))), plus(Y'', Z'')) -> PLUS(s(s(s(X1''''''))), plus(s(s(Y'')), Z''))
PLUS(s(s(s(s(X'''''')))), plus(Y'', Z'')) -> PLUS(s(s(s(X''''''))), plus(s(s(Y'')), Z''))
PLUS(s(s(s(X1''''))), plus(Y'', Z'')) -> PLUS(s(s(X1'''')), plus(s(s(Y'')), Z''))
PLUS(s(s(s(s(X1'''''')))), plus(Y'', Z'')) -> PLUS(s(s(s(X1''''''))), plus(s(s(Y'')), Z''))
PLUS(s(s(s(s(X'''''')))), plus(Y'', Z'')) -> PLUS(s(s(s(X''''''))), plus(s(s(Y'')), Z''))
PLUS(s(s(s(X1''''))), plus(Y'', Z'')) -> PLUS(s(s(X1'''')), plus(s(s(Y'')), Z''))
PLUS(s(s(s(X''''))), plus(Y'', Z'')) -> PLUS(s(s(X'''')), plus(s(s(Y'')), Z''))
PLUS(s(s(X'')), plus(X2', plus(X3', X4'))) -> PLUS(s(X''), plus(X3', plus(X2', X4')))
PLUS(s(s(s(X1''''))), plus(X2', plus(X3', X4'))) -> PLUS(s(s(X1'''')), plus(X3', plus(X2', X4')))
PLUS(s(s(s(X''''))), plus(X2', plus(X3', X4'))) -> PLUS(s(s(X'''')), plus(X3', plus(X2', X4')))
PLUS(s(s(s(s(s(X1''''''''))))), plus(Y'', Z'')) -> PLUS(s(s(s(s(X1'''''''')))), plus(s(s(Y'')), Z''))
plus(s(X), plus(Y, Z)) -> plus(X, plus(s(s(Y)), Z))
plus(s(X1), plus(X2, plus(X3, X4))) -> plus(X1, plus(X3, plus(X2, X4)))
innermost
nine new Dependency Pairs are created:
PLUS(s(s(X'')), plus(X2', plus(X3', X4'))) -> PLUS(s(X''), plus(X3', plus(X2', X4')))
PLUS(s(s(s(s(X'''''')))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(X''''''))), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(s(X1'''''')))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(X1''''''))), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(X''''))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(X'''')), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(s(s(X''''''''))))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(s(X'''''''')))), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(s(s(X1''''''''))))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(s(X1'''''''')))), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(s(s(s(X'''''''''')))))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(s(s(X''''''''''))))), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(s(s(s(X1'''''''''')))))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(s(s(X1''''''''''))))), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(s(s(s(s(X''''''''''''))))))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(s(s(s(X'''''''''''')))))), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(s(s(s(s(X1''''''''''''))))))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(s(s(s(X1'''''''''''')))))), plus(X3'', plus(X2'', X4'')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 10
↳Forward Instantiation Transformation
PLUS(s(s(s(s(s(s(s(X1''''''''''''))))))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(s(s(s(X1'''''''''''')))))), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(s(s(s(s(X''''''''''''))))))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(s(s(s(X'''''''''''')))))), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(s(s(s(X1'''''''''')))))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(s(s(X1''''''''''))))), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(s(s(s(X'''''''''')))))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(s(s(X''''''''''))))), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(s(s(X1''''''''))))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(s(X1'''''''')))), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(s(s(X''''''''))))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(s(X'''''''')))), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(X''''))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(X'''')), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(s(X1'''''')))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(X1''''''))), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(s(X'''''')))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(X''''''))), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(s(s(s(X'''''''''')))))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(s(s(X''''''''''))))), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(s(s(X1''''''''))))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(s(X1'''''''')))), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(s(s(X''''''''))))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(s(X'''''''')))), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(X''''))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(X'''')), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(s(X1'''''')))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(X1''''''))), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(s(X'''''')))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(X''''''))), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(X1''''))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(X1'''')), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(s(s(X1''''''''))))), plus(Y'', Z'')) -> PLUS(s(s(s(s(X1'''''''')))), plus(s(s(Y'')), Z''))
PLUS(s(s(s(s(s(X''''''''))))), plus(Y'', Z'')) -> PLUS(s(s(s(s(X'''''''')))), plus(s(s(Y'')), Z''))
PLUS(s(s(s(X''''))), plus(Y'', Z'')) -> PLUS(s(s(X'''')), plus(s(s(Y'')), Z''))
PLUS(s(s(s(s(X1'''''')))), plus(Y'', Z'')) -> PLUS(s(s(s(X1''''''))), plus(s(s(Y'')), Z''))
PLUS(s(s(s(s(X'''''')))), plus(Y'', Z'')) -> PLUS(s(s(s(X''''''))), plus(s(s(Y'')), Z''))
PLUS(s(s(s(X1''''))), plus(Y'', Z'')) -> PLUS(s(s(X1'''')), plus(s(s(Y'')), Z''))
PLUS(s(s(s(s(X1'''''')))), plus(Y'', Z'')) -> PLUS(s(s(s(X1''''''))), plus(s(s(Y'')), Z''))
PLUS(s(s(s(s(X'''''')))), plus(Y'', Z'')) -> PLUS(s(s(s(X''''''))), plus(s(s(Y'')), Z''))
PLUS(s(s(s(X1''''))), plus(Y'', Z'')) -> PLUS(s(s(X1'''')), plus(s(s(Y'')), Z''))
PLUS(s(s(s(X''''))), plus(Y'', Z'')) -> PLUS(s(s(X'''')), plus(s(s(Y'')), Z''))
PLUS(s(s(s(X1''''))), plus(X2', plus(X3', X4'))) -> PLUS(s(s(X1'''')), plus(X3', plus(X2', X4')))
PLUS(s(s(s(X''''))), plus(X2', plus(X3', X4'))) -> PLUS(s(s(X'''')), plus(X3', plus(X2', X4')))
PLUS(s(s(s(s(s(s(X1'''''''''')))))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(s(s(X1''''''''''))))), plus(X3'', plus(X2'', X4'')))
plus(s(X), plus(Y, Z)) -> plus(X, plus(s(s(Y)), Z))
plus(s(X1), plus(X2, plus(X3, X4))) -> plus(X1, plus(X3, plus(X2, X4)))
innermost
10 new Dependency Pairs are created:
PLUS(s(s(s(X''''))), plus(X2', plus(X3', X4'))) -> PLUS(s(s(X'''')), plus(X3', plus(X2', X4')))
PLUS(s(s(s(s(X'''''')))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(X''''''))), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(s(X1'''''')))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(X1''''''))), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(s(s(X''''''''))))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(s(X'''''''')))), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(s(s(X1''''''''))))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(s(X1'''''''')))), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(s(s(s(X'''''''''')))))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(s(s(X''''''''''))))), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(s(s(s(X1'''''''''')))))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(s(s(X1''''''''''))))), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(s(s(s(s(X''''''''''''))))))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(s(s(s(X'''''''''''')))))), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(s(s(s(s(X1''''''''''''))))))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(s(s(s(X1'''''''''''')))))), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(s(s(s(s(s(X'''''''''''''')))))))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(s(s(s(s(X''''''''''''''))))))), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(s(s(s(s(s(X1'''''''''''''')))))))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(s(s(s(s(X1''''''''''''''))))))), plus(X3'', plus(X2'', X4'')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 11
↳Forward Instantiation Transformation
PLUS(s(s(s(s(s(s(s(s(X1'''''''''''''')))))))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(s(s(s(s(X1''''''''''''''))))))), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(s(s(s(s(s(X'''''''''''''')))))))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(s(s(s(s(X''''''''''''''))))))), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(s(s(s(s(X1''''''''''''))))))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(s(s(s(X1'''''''''''')))))), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(s(s(s(s(X''''''''''''))))))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(s(s(s(X'''''''''''')))))), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(s(s(s(X1'''''''''')))))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(s(s(X1''''''''''))))), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(s(s(s(X'''''''''')))))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(s(s(X''''''''''))))), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(s(s(X1''''''''))))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(s(X1'''''''')))), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(s(s(X''''''''))))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(s(X'''''''')))), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(s(X1'''''')))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(X1''''''))), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(s(X'''''')))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(X''''''))), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(s(s(s(s(X''''''''''''))))))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(s(s(s(X'''''''''''')))))), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(s(s(s(X1'''''''''')))))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(s(s(X1''''''''''))))), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(s(s(s(X'''''''''')))))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(s(s(X''''''''''))))), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(s(s(X1''''''''))))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(s(X1'''''''')))), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(s(s(X''''''''))))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(s(X'''''''')))), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(X''''))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(X'''')), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(s(X1'''''')))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(X1''''''))), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(s(X'''''')))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(X''''''))), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(s(s(s(X1'''''''''')))))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(s(s(X1''''''''''))))), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(s(s(s(X'''''''''')))))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(s(s(X''''''''''))))), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(s(s(X1''''''''))))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(s(X1'''''''')))), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(s(s(X''''''''))))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(s(X'''''''')))), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(X''''))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(X'''')), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(s(X1'''''')))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(X1''''''))), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(s(X'''''')))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(X''''''))), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(X1''''))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(X1'''')), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(s(s(X1''''''''))))), plus(Y'', Z'')) -> PLUS(s(s(s(s(X1'''''''')))), plus(s(s(Y'')), Z''))
PLUS(s(s(s(s(s(X''''''''))))), plus(Y'', Z'')) -> PLUS(s(s(s(s(X'''''''')))), plus(s(s(Y'')), Z''))
PLUS(s(s(s(X''''))), plus(Y'', Z'')) -> PLUS(s(s(X'''')), plus(s(s(Y'')), Z''))
PLUS(s(s(s(s(X1'''''')))), plus(Y'', Z'')) -> PLUS(s(s(s(X1''''''))), plus(s(s(Y'')), Z''))
PLUS(s(s(s(s(X'''''')))), plus(Y'', Z'')) -> PLUS(s(s(s(X''''''))), plus(s(s(Y'')), Z''))
PLUS(s(s(s(X1''''))), plus(Y'', Z'')) -> PLUS(s(s(X1'''')), plus(s(s(Y'')), Z''))
PLUS(s(s(s(s(X1'''''')))), plus(Y'', Z'')) -> PLUS(s(s(s(X1''''''))), plus(s(s(Y'')), Z''))
PLUS(s(s(s(s(X'''''')))), plus(Y'', Z'')) -> PLUS(s(s(s(X''''''))), plus(s(s(Y'')), Z''))
PLUS(s(s(s(X1''''))), plus(Y'', Z'')) -> PLUS(s(s(X1'''')), plus(s(s(Y'')), Z''))
PLUS(s(s(s(X''''))), plus(Y'', Z'')) -> PLUS(s(s(X'''')), plus(s(s(Y'')), Z''))
PLUS(s(s(s(X1''''))), plus(X2', plus(X3', X4'))) -> PLUS(s(s(X1'''')), plus(X3', plus(X2', X4')))
PLUS(s(s(s(s(s(s(s(X1''''''''''''))))))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(s(s(s(X1'''''''''''')))))), plus(X3'', plus(X2'', X4'')))
plus(s(X), plus(Y, Z)) -> plus(X, plus(s(s(Y)), Z))
plus(s(X1), plus(X2, plus(X3, X4))) -> plus(X1, plus(X3, plus(X2, X4)))
innermost
12 new Dependency Pairs are created:
PLUS(s(s(s(X1''''))), plus(X2', plus(X3', X4'))) -> PLUS(s(s(X1'''')), plus(X3', plus(X2', X4')))
PLUS(s(s(s(s(X1'''''')))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(X1''''''))), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(s(X'''''')))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(X''''''))), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(s(s(X''''''''))))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(s(X'''''''')))), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(s(s(X1''''''''))))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(s(X1'''''''')))), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(s(s(s(X'''''''''')))))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(s(s(X''''''''''))))), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(s(s(s(X1'''''''''')))))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(s(s(X1''''''''''))))), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(s(s(s(s(X''''''''''''))))))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(s(s(s(X'''''''''''')))))), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(s(s(s(s(X1''''''''''''))))))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(s(s(s(X1'''''''''''')))))), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(s(s(s(s(s(X'''''''''''''')))))))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(s(s(s(s(X''''''''''''''))))))), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(s(s(s(s(s(X1'''''''''''''')))))))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(s(s(s(s(X1''''''''''''''))))))), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(s(s(s(s(s(s(X''''''''''''''''))))))))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(s(s(s(s(s(X'''''''''''''''')))))))), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(s(s(s(s(s(s(X1''''''''''''''''))))))))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(s(s(s(s(s(X1'''''''''''''''')))))))), plus(X3'', plus(X2'', X4'')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 12
↳Polynomial Ordering
PLUS(s(s(s(s(s(s(s(s(s(X1''''''''''''''''))))))))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(s(s(s(s(s(X1'''''''''''''''')))))))), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(s(s(s(s(s(s(X''''''''''''''''))))))))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(s(s(s(s(s(X'''''''''''''''')))))))), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(s(s(s(s(s(X1'''''''''''''')))))))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(s(s(s(s(X1''''''''''''''))))))), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(s(s(s(s(s(X'''''''''''''')))))))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(s(s(s(s(X''''''''''''''))))))), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(s(s(s(s(X1''''''''''''))))))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(s(s(s(X1'''''''''''')))))), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(s(s(s(s(X''''''''''''))))))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(s(s(s(X'''''''''''')))))), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(s(s(s(X1'''''''''')))))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(s(s(X1''''''''''))))), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(s(s(s(X'''''''''')))))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(s(s(X''''''''''))))), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(s(s(X1''''''''))))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(s(X1'''''''')))), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(s(s(X''''''''))))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(s(X'''''''')))), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(s(X'''''')))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(X''''''))), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(s(X1'''''')))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(X1''''''))), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(s(s(s(s(s(X'''''''''''''')))))))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(s(s(s(s(X''''''''''''''))))))), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(s(s(s(s(X1''''''''''''))))))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(s(s(s(X1'''''''''''')))))), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(s(s(s(s(X''''''''''''))))))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(s(s(s(X'''''''''''')))))), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(s(s(s(X1'''''''''')))))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(s(s(X1''''''''''))))), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(s(s(s(X'''''''''')))))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(s(s(X''''''''''))))), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(s(s(X1''''''''))))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(s(X1'''''''')))), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(s(s(X''''''''))))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(s(X'''''''')))), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(s(X1'''''')))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(X1''''''))), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(s(X'''''')))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(X''''''))), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(s(s(s(s(X1''''''''''''))))))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(s(s(s(X1'''''''''''')))))), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(s(s(s(s(X''''''''''''))))))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(s(s(s(X'''''''''''')))))), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(s(s(s(X1'''''''''')))))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(s(s(X1''''''''''))))), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(s(s(s(X'''''''''')))))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(s(s(X''''''''''))))), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(s(s(X1''''''''))))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(s(X1'''''''')))), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(s(s(X''''''''))))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(s(X'''''''')))), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(X''''))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(X'''')), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(s(X1'''''')))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(X1''''''))), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(s(X'''''')))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(X''''''))), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(s(s(s(X1'''''''''')))))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(s(s(X1''''''''''))))), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(s(s(s(X'''''''''')))))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(s(s(X''''''''''))))), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(s(s(X1''''''''))))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(s(X1'''''''')))), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(s(s(X''''''''))))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(s(X'''''''')))), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(X''''))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(X'''')), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(s(X1'''''')))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(X1''''''))), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(s(X'''''')))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(X''''''))), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(X1''''))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(X1'''')), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(s(s(X1''''''''))))), plus(Y'', Z'')) -> PLUS(s(s(s(s(X1'''''''')))), plus(s(s(Y'')), Z''))
PLUS(s(s(s(s(s(X''''''''))))), plus(Y'', Z'')) -> PLUS(s(s(s(s(X'''''''')))), plus(s(s(Y'')), Z''))
PLUS(s(s(s(X''''))), plus(Y'', Z'')) -> PLUS(s(s(X'''')), plus(s(s(Y'')), Z''))
PLUS(s(s(s(s(X1'''''')))), plus(Y'', Z'')) -> PLUS(s(s(s(X1''''''))), plus(s(s(Y'')), Z''))
PLUS(s(s(s(s(X'''''')))), plus(Y'', Z'')) -> PLUS(s(s(s(X''''''))), plus(s(s(Y'')), Z''))
PLUS(s(s(s(X1''''))), plus(Y'', Z'')) -> PLUS(s(s(X1'''')), plus(s(s(Y'')), Z''))
PLUS(s(s(s(s(X1'''''')))), plus(Y'', Z'')) -> PLUS(s(s(s(X1''''''))), plus(s(s(Y'')), Z''))
PLUS(s(s(s(s(X'''''')))), plus(Y'', Z'')) -> PLUS(s(s(s(X''''''))), plus(s(s(Y'')), Z''))
PLUS(s(s(s(X1''''))), plus(Y'', Z'')) -> PLUS(s(s(X1'''')), plus(s(s(Y'')), Z''))
PLUS(s(s(s(X''''))), plus(Y'', Z'')) -> PLUS(s(s(X'''')), plus(s(s(Y'')), Z''))
PLUS(s(s(s(s(s(s(s(s(X1'''''''''''''')))))))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(s(s(s(s(X1''''''''''''''))))))), plus(X3'', plus(X2'', X4'')))
plus(s(X), plus(Y, Z)) -> plus(X, plus(s(s(Y)), Z))
plus(s(X1), plus(X2, plus(X3, X4))) -> plus(X1, plus(X3, plus(X2, X4)))
innermost
PLUS(s(s(s(s(s(s(s(s(s(X1''''''''''''''''))))))))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(s(s(s(s(s(X1'''''''''''''''')))))))), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(s(s(s(s(s(s(X''''''''''''''''))))))))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(s(s(s(s(s(X'''''''''''''''')))))))), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(s(s(s(s(s(X1'''''''''''''')))))))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(s(s(s(s(X1''''''''''''''))))))), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(s(s(s(s(s(X'''''''''''''')))))))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(s(s(s(s(X''''''''''''''))))))), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(s(s(s(s(X1''''''''''''))))))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(s(s(s(X1'''''''''''')))))), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(s(s(s(s(X''''''''''''))))))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(s(s(s(X'''''''''''')))))), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(s(s(s(X1'''''''''')))))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(s(s(X1''''''''''))))), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(s(s(s(X'''''''''')))))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(s(s(X''''''''''))))), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(s(s(X1''''''''))))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(s(X1'''''''')))), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(s(s(X''''''''))))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(s(X'''''''')))), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(s(X'''''')))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(X''''''))), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(s(X1'''''')))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(s(X1''''''))), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(X''''))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(X'''')), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(X1''''))), plus(X2'', plus(X3'', X4''))) -> PLUS(s(s(X1'''')), plus(X3'', plus(X2'', X4'')))
PLUS(s(s(s(s(s(X1''''''''))))), plus(Y'', Z'')) -> PLUS(s(s(s(s(X1'''''''')))), plus(s(s(Y'')), Z''))
PLUS(s(s(s(s(s(X''''''''))))), plus(Y'', Z'')) -> PLUS(s(s(s(s(X'''''''')))), plus(s(s(Y'')), Z''))
PLUS(s(s(s(X''''))), plus(Y'', Z'')) -> PLUS(s(s(X'''')), plus(s(s(Y'')), Z''))
PLUS(s(s(s(s(X1'''''')))), plus(Y'', Z'')) -> PLUS(s(s(s(X1''''''))), plus(s(s(Y'')), Z''))
PLUS(s(s(s(s(X'''''')))), plus(Y'', Z'')) -> PLUS(s(s(s(X''''''))), plus(s(s(Y'')), Z''))
PLUS(s(s(s(X1''''))), plus(Y'', Z'')) -> PLUS(s(s(X1'''')), plus(s(s(Y'')), Z''))
plus(s(X), plus(Y, Z)) -> plus(X, plus(s(s(Y)), Z))
plus(s(X1), plus(X2, plus(X3, X4))) -> plus(X1, plus(X3, plus(X2, X4)))
POL(plus(x1, x2)) = 1 POL(PLUS(x1, x2)) = 1 + x1 POL(s(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 13
↳Dependency Graph
plus(s(X), plus(Y, Z)) -> plus(X, plus(s(s(Y)), Z))
plus(s(X1), plus(X2, plus(X3, X4))) -> plus(X1, plus(X3, plus(X2, X4)))
innermost